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Motivation I: 4d Theories on Riemann Surfaces

d=4, N=1 quiver gauge theories type IIB on AdS(5)xSE(5)

d=2, (0,2) sCFT type IIB on AdS(3)xM(7)

AdS/CFT
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Benini, Bobev, Crichigno

Obvious questions: central charge, spectrum/chiral ring, 3-pt. functions.
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Motivation II: Type IIB on AdS(3) w/ F5

Kim; Gauntlett; Donos, Mac Conamhna, Mateos, Sparks, Waldram, …; Harvey, Lawson; Yau

Generalisation of Sasaki-Einstein case: 
• M6 is Kähler. 
• M7 is Cauchy-Riemann (CR). 
• M8=C(M7) is a complex variety (not Kähler!).

F5 = (1 + ?)vol(AdS3) ^ F, F =

1
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J � 1
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e4A⌘

�
.

ds2IIB = e2A
⇥
ds2(AdS3) + ds27

⇤
, ds27 = e�4Ads26 + ⌘2.

Generalisation: Warped AdS3 with F5 and dilaton

Motivation III: Learn about AdS/CFT from KK ↔ learn about KK from AdS/CFT.



AdS/CFT and Kaluza-Klein
Recall

scaling dimensions ↔ AdS(3) masses ↔ spectra of differential operators on M7

Compare: Klebanov, Pufu, Rocha; Bachas, Estes; Ahn, Woo; Passias, Tomasiello; …

Aim: Solve these by exploiting superconformal symmetry. 
• Unitarity bounds — bounds on spectra. 
• Ring structure — cohomology groups at bound. 
• Supersymmetry — maps between spectra of different operators.

 For Sasaki-Einstein case, see: Eager, Schmude, Tachikawa

spin-2 & axio-dilaton fluctuations

dilatino fluctuations

Need to analyse on M7 (among others):
L0 = �� 8g�@A@�,

L1/2 = �µrµ +
9

2
�µ@µA+
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2
e�4A�µ⌫Fµ⌫ .



A Subtlety: The Baryonic Contribution to the R-symmetry

Ttr = ✏1T1 + ✏2T2 + TR + ✏BTB

c-extremization yields baryonic contribution to d=2 R-symmetry

⌘ $ U(1)R

From supergravity classification of background & Killing spinors

Benini, Bobev, Crichigno

Supergravity fluctuations are intrinsically “mesonic” and not sensitive to this.



The Deformed Laplacian I — Deformed Adjoint Operators

(↵,�)c ⌘
Z

ecA ? ↵̄ ^ �, (d↵,�)c = (↵, d⇤c�), L0 = dd⇤8 + d⇤8d.

Recall the de Rham-Laplacian:

Generalises to p-forms (gauge-fixing, Hodge decomposition).

Recall that for Kähler manifolds:
! = 2 ! ø! , ! Y = 0 i " ø! Y = 0 .

(! , " ) !
Z

#ø! " " , (d! , " ) = ( ! , d⇤" ), � = dd⇤ + d⇤d.



The Deformed Laplacian II — The CR Structure

[T 1,0, T 1,0] ✓ T 1,0 ) d = @b + @̄b + ⌘ ^£⌘.

TCM7 = T 1,0 � T 0,1 � C⌘.

⌘

Holomorphy in the CR sense is related to holomorphy on the variety M8.

T 1,0
�
T 0,1



graviton, spin 2 at bound: chiral primary

axio-dilaton, spin 0 at bound: descendant of 
chiral primary

The unitarity bound for scalar “wavefunctions” (both spin-2 & axio-dilaton)

The Deformed Laplacian III — Solutions at the Bound

£⌘Y = ıqY, L0Y ⌘ (E2
0 + 2E0)Y � (q2 + 2q)Y, with “=” i↵ @̄bY = 0.
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Thus: Every holomorphic function defines Y 2 H0,0
@̄b

(M7) ⇠= H0,0(M8)



Holomorphic Sections on CY3 and M8.

type IIB on AdS(5)xSE(5)

type IIB on AdS(3)xM(7)
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holomorphic sections on CY3

holomorphic sections on M8

short multiplets

short multiplets

How is M8 related to CY3 and Σ?



Dilatino Fluctuations & Supersymmetry

Recall:

L1/2
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Figure 1: A summary of our results for the axio-dilaton as well as the dilatino. The figure
only includes the right handed quantum numbers

∣∣h̄, q
〉

s
since h follows directly from the

helicity via h ! h̄ = s. The action of L̄! 1 and G!
± 1/ 2 is indicated with dotted arrows. The

red mode comes from the axio-dilaton and is discussed in section 2, the blue modes are
the dilatino modes discussed in section 4. At the unitarity bound we have E0 = q. The
dashed mode is the chiral primary.

An obvious question is whether we can generalize these successes away from the com-
paratively simple spin 2, axio-dilaton and dilatino fluctuations to the remainder of the
spectrum. With this in mind we take a first look at the three-form equation in section
5. The situation is involved, yet under some mild assumptions we are able to identify
Betti multiplets; that is, multiplets arising from non-trivial de Rham cohomology groups
H1(M7) and H2(M7). Our analysis shows that the deformation of the Laplace operator
seen in the case of the axio-dilaton can be generalized suitably to p-forms.

As we mentioned previously, a particularly interesting class of the geometries in question
has recently been constructed in [26] via twisted compactification of four-dimensional N =
1 quiver gauge theories dual to type IIB on AdS5 " Y p,q. Our results on the spectrum
together with those of [8, 9, 37] lead to an interesting question: If the short multiplets of
the four-dimensional theory correspond to certain holomorphic sections on the Calabi-Yau
cone over Y p,q, and if at least some of the short multiplets of the two-dimensional theory
correspond to holomorphic sections of the cone over M7, how are the two spectra related?
Our methods are suitable to address this question and we will give a first glimpse of this
in section 3.2.
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Example I: AdS(3) x S3

AdS3 ! S3 ! T4 " C(S3 ! T4) = C2 ! T4 " H 0,0(C2)

Chiral primaries ↔ homogeneous polynomials; R-charges ↔ degrees

Compare: Maldacena, Strominger; de Boer
Note: T4 is irrelevant due to holomorphy, not scaling.



Example II: The “Universal Flow” from AdS(5)xYp,q

ds2
10 = ds2(AdS3) +

3
4

ds2(! g> 1) +
9
4

ds2( ÷Y p,q ),

ds2(! g> 1) = ds2(H2/ " ) =
1
x2

2
(dx2

1 + dx2
2),

ds2( ÷Y p,q ) =
1 ! cy

6
(d! 2 + sin 2 ! d" 2) +

1
wq

dy2 +
wq
36

(d# + cos ! d" )2

+
1
9

!
d$ ! cos! d" + y(d# + ccos! d" ) !

dx1

x2

"
.

“Universal flow”: U(1)UV = U(1)IR

Y = eõN ÷!
÷! + õN" " + õN #

l # X (x1, x2)! (! )R(y).

Assume separability:

See also: Ardehali, Liu, Szepietowski

Impose holomorphy:

ø! bY = 0 !

!
! (" ) = (sin ! )

N ! + N ÷"

(1+cos ! )N !

R(y) =
" 3

i =1 (y " yi )ai



! q = 0 , X = const. ! Y = const.

Only one mode survives the projection → dual to energy-momentum tensor

Example II: The “Universal Flow” and the Role of Σg>1

X (z, øz) = f (z)(Im z)! q/ 2

For the upper half plane

For compact Σ: e.g. Klein Quartic
! = { M ! PSL(2, Z)|M " 1 mod 7}

T7 : z !" z + 7 , U7 : z !"
z

7z + 1

X (z, øz) = (Im z)! q/ 2
!

k " Z

ak e
2! õz

7

X ! U7(z, øz) = (Im z)! q/ 2

!
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Questions, Comments & Some Future Directions

• Baryonic operators & the “baryonic” R-symmetry contribution. 

• Complete chiral ring/spectrum? 

• Complex structure deformations (via p-forms). 

• Elliptic genera? 

• More general: fluxes, geometries, … (results on Betti multiplets exist.) 

• C(MSE(5)) vs. C(M8)?



Thanks!


