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N = 1 Supersymmetry in d = 2 + 1

• Supercharges form a Majorana spinor Qα.

• Two main characters:

* Vector multiplet Vα = i( /Aθ)α + 1
2 θ̄θλα.

* Real multiplet Φ = X + θ̄ψ + 1
2 θ̄θF .

• Supersymmetry is ”real”, so there are no non-renornalization
theorems. Superpotential can receive perturbative corrections,

• Vacuum energy is still bounded by zero from below.

• Witten index can be introduced.

• There might be experimental realizations of d = 2 + 1
minimal supersymmetry (Li, Vaezi, Mendl, Yao ’17).
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N = 1 SU(N)k Vector Multiplet

L = − 1

4g2
TrF 2 + iTrλ /Dλ+ k

4πTr
(
AdA− 2i

3 A
3
)
− kg2

2π Trλλ

• Witten index (Witten ’99):

IW =
1

(N − 1)!

N/2−1∏
j=−N/2+1

(k − j) =

{
6= 0, if k ≥ N/2.

= 0, if 0 ≤ k < N/2.

• k ≥ N/2: SUSY preserved, SU(N)
k−N

2
in the IR.

• 0 ≤ k < N/2: SUSY is broken, Gα + U(N2 − k)N
2 +k,N

in the

IR (Gomis, Komargodski, Seiberg ’17).
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Vector Multiplet with an Adjoint Matter Multiplet

Vector multiplet (A, λ), matter multiplet (X , ψ).

L =
1

4g2
TrF 2 + iTrλ /Dλ+ iTrψ /Dψ + Tr(DX )2 +

+
k

4π
Tr

(
AdA− 2i

3
A3

)
− kg3

2π
Trλλ+

√
2igTr [λ,X ]ψ.

• N = 1 deformation Tr(m2X 2 + mψψ).

• For m = −kg2

2π SUSY is enhanced to N = 2.
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Large Mass Asymptotic Phase: k ≥ N
• Matter multiplet can be integrated out

SU(N)k →

{
SU(N)k+N/2, m→ +∞
SU(N)k−N/2, m→ −∞

• k ± N/2 ≥ N/2 - in both limits m→ ±∞ physics of the
”large k” phase.

• Witten index jumps at the point m = 0.

SU (N
k-N SU (N

k

m

?
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Large Mass Asymptotic Phase: 0 < k < N

• Matter multiplet can be integrated out

SU(N)k →

{
SU(N)k+N/2, m→ +∞
SU(N)k−N/2, m→ −∞

• |k − N/2| < N/2 - in the limit m→ −∞ SUSY is broken.

• Witten index jumps at the point m = 0.

Gα +U(N - k)k,N
SU (N)k

m

?
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Classical Moduli Space of Vacua at m = 0

X =


X1 0 0 ... 0
0 X2 0 ... 0
... ... ... ... ...
0 0 ... XN−1 0
0 0 0 ... XN

 ,

N∑
i=1

Xi = 0.

Moduli space: RN−1/SN , where SN is Weyl group of SU(N).
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Classical Abelian Vacua

• Abelian vacua: Xi 6= Xj for i 6= j .

• Unbroken gauge group: U(1)N−1.

• IR TQFT:

Kij

4π

∫
AidAj , K = k


2 −1 0 ... 0
−1 2 −1 ... 0
... ... ... ... ...
0 0 ... −1 2

 .

• Defined up to an SL(N − 1,Z) transformation

K → MkMT , ~A→ M ~A, M ∈ SL(N − 1,Z).

• For k = 1 this TQFT is dual to U(1)−N Chern-Simons theory:

Kij

4π

∫
AidAj ↔ − N

4π
Ã ∧ dÃ.
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Classical Non-Abelian Vacua

• Non-Abelian vacua: Xi = Xj for some i 6= j → L blocks of the
size SI × SI , I = 1, ..., L.

X =


S1 × S1

S2 × S2
...

SL × SL

 .

• Unbroken gauge group: S [U(S1)× ...× U(S1)].

• IR TQFT if the gauge group was U(N):

U(S1)k,k × U(S2)k,k × ...× U(SL)k,k .

• Use Lagrange multiplier to come back to the SU(N):

1

2π
∧

L∑
I=1

SITrAi .
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Semiclassical Moduli Space of Vacua

• Non-trivial superpotential W(Xi ) can be perturbatively
generated and lift the moduli space.

• To detect the appearance of new vacua, it is convenient to
use the large X expansion, assuming first that Xij 6= 0
(violated at the singular loci).

• Assuming the uniform scaling Xij ∼ X and choosing the
suitable gauge, we get by dimensional analysis for the scalar
potential

V (L)(X ) = g2L−2
∑
n>0

dn;L
(kg2)2n

(gX )L+2n−4
, V =

∑
L

V (L)(X ).
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Semiclassical Moduli Space of Vacua: one-loop order

• One-loop contribution to the scalar potential vanishes

V (1) = 0.

• Upon the integration out of the massive charged fermions, CS
level matrix K is not renormalized.
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Semiclassical Moduli Space of Vacua: two-loop order

• The scalar potential given above corresponds to the
superpotential

W(X ) = kg3
∑
L>1

gL
∑
n>0

cn;L
(kg2)2n−2

g2nX L+2n−5
.

• Any given term in the 1/X expansion receives contributions
from finitely many loop orders in perturbation theory.

• The leading term is at L = 2, n = 1, and scales linearly:

W ∼ X .

• The two-loop superpotential has been computed (Armoni,
Hollowood ’05, ’06)

W = −
∑
ij

g3k
√

g2k2 + X 2
ij .
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Semiclassical Moduli Space of Vacua: two-loop order

• In the ”far zone” X � gk, the only reliable information is the
linear term:

W = −g3k
∑
ij

|Xij |.

• We see that the classical moduli space is lifted at two loops.



Introduction Classical and Semiclassical Analysis Proposal for Infrared Phases Further Developments Conclusion

Semiclassical Abelian Vacua near m=0

• Consider now the small mass deformation of the theory

W = −
∑
ij

g3k
√
g2k2 + X 2

ij + m
∑
i

X 2
i + λ

∑
i

Xi .

• F-term equations in the ”far zone” X � gk take the form

−g3k
∑
j

sgn(Xij) + mXi +
1

2
λ = 0,

∑
i

Xi = 0.

• For small negative m there is no solution.

• For small positive m a solution exists given by (up to an
action of the Weyl group)

Xi =
g3k

m
(N + 1− 2i).

This is a supersymmetric vacuum with U(1)N−1

Chern-Simons theory.
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Semiclassical Abelian Vacua near m=0

Intuitive picture: for m < 0 there is one vacuum,potential increases
in all directions, for m = 0 a flat direction opens up, and for m > 0
a new vacuum comes from the infinity.

mm=0
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Semiclassical (Non)-Abelian Vacua at large k .

• Large k is another weakly coupled regime. The critical points
of the superpotential are given by the solutions of

mXi +
1

2
λ = g3k

∑
i

Xij√
g2k2 + X 2

ij

,
∑
i

Xi = 0.

• There is clearly the solution Xi = 0.

• Solutions with Xi 6= 0 for some i exist only for m
g2 ∈ (0,N).

Assuming m to be small, they are given by

XI =
g3k

m
[(SI+1 + ...+ SL)− (S1 + ...+ SI−1)],

where SI is the size of the I th block. There are 2N−1 vacua ,
corresponding to the ordered partitions (or compositions) of
N.
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Semiclassical (Non)-Abelian Vacua at large k .

• For convenience we switch from SU(N) to U(N).

• In order to understand the IR theory in each vacuum, we need
the fermion mass matrix. It is block-diagonal with SI × SI
blocks, I = 1, ..., L. Eigenvalues of the I th block are

(−g2SI + m,−g2SI + m, ...,−g2SI + m,m),

such that all the fields apart from the decoupled mode have
negative masses.

• The resulting infrared TQFT is then given by

U(S1)k−S1,k × U(S2)k−S2,k × ...× U(SL)k−SL,k .
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Matching the Witten Index
• The resulting infrared TQFT:
U(S1)k−S1,k × U(S2)k−S2,k × ...× U(SL)k−SL,k

• It then follows that every vacuum carry the index∏
I

k!

SI !(k − SI )!
.

• When the total index is being computed, the contributions of
different vacua must be weighted by a sign (Witten, ’82)

(−1)
∑

I (SI−1) = (−1)N−L.

• The total index is then given by

I =
∑
P

(−1)N−L
∏
I

k!

SI !(k − SI )!
.

• One can proof the following combinatorial identity∑
P

(−1)N−L
∏
I

k!

SI !(k − SI )!
=

(N + k − 1)!

N!(k − 1)!
= ISU(N)k .
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Phase diagram for k ≥ N

m



SU (N)k-N SU (N)k-N SU (N)k-N SU (N)k

New SUSY vacua

m=0 = 2 CFT(s)
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Phase diagram for 0 < k < N

m

Gα + U(N - k)k,N Gα + U(N - k)k,N
Gα + U(N - k)k,N

New SUSY vacua

SU (N)k

m=0 CFT(s)=2
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Phase diagram for k = 0

m
m=0

=2
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Further Developments

• The problem of SQCD3 with fundamentals was considered in
the same work. A duality between SU and U theories is
suggested.

• A similar class of models, but with the tree-level
superpotential was considered in Benini, Benvenuti ’18. They
proposed another duality, involving the gauge singlet.

• Gaiotto, Komargodski, Wu ’18 studied N = 1 theories with
time reversal symmetry, which sometimes provides the
existence of exact moduli spaces.

• Benini, Benvenuti ’18 observed the global symmetry
enhancement in N = 1 QED.
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Instead of Conclusion

m



SU (N)k-N SU (N)k-N SU (N)k-N SU (N)k

New SUSY vacua

m=0 = 2 CFT(s)

m

Gα + U(N - k)k,N Gα + U(N - k)k,N
Gα + U(N - k)k,N

New SUSY vacua

SU (N)k

m=0 CFT(s)=2
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Thank you for your attention!


	Introduction
	Classical and Semiclassical Analysis
	Proposal for Infrared Phases
	Further Developments
	Conclusion

