Flowing From 16 to 32 Supercharges

Supersymmetric Theories, Dualities and
Deformations
Matthew Buican
Queen Mary University of London

Based on:
M.B., Z. Laczko, and T. Nishinaka [arXiv:1807. 02785 [hep-th]]

July 18, 2018

Outline

- Motivation and review
- UV starting points
- The simplest RG flow
- Generalizations
- Conclusions and open questions

Motivation and Review

Goals:

(i) Find a more unorthodox way to construct theories with 4D $\mathcal{N}=4$ SUSY.
(ii) Find a more controlled set of examples in which to study SUSY enhancement.

Why:
(i) Is the known space of $\mathcal{N}=4$ theories complete?
(ii) Given UV data and deformations, can we predict IR SUSY enhancement?

Motivation and Review (cont...)

- We often assume the list of $\mathcal{N}=4$ theories is known: take some lie algebra, \mathfrak{g}, an $\mathcal{N}=1$ vector multiplet, three adjoint chiral multiplets, and gauge.
- The gauge coupling, τ, is exactly marginal.

Motivation and Review (cont...)

- Various subtleties to do with the global structure of the gauge group and extended operators [Aharony, Seiberg, Tachikawa], [Argyres, Martone], [García-Etxebarria].
- But, these discussions do not affect the local operator content. Are there $\mathcal{N}=4$ theories that are more exotic?
- If \exists such (local) \mathcal{T}, then
(i) \mathcal{T} has no weak coupling limit.
(ii) \mathcal{T} has an exactly marginal deformation [Dolan, Osborn]
(iii) If \mathcal{T} has an odd dimensional vacuum moduli space \Rightarrow global Witten anomaly for $s u(2) \subset s u(4)_{R}$.

Motivation and Review (cont...)

- How would we build such theories (if they exist!) in QFT?
- Starting in CFT via the bootstrap

$$
\begin{equation*}
\mathcal{C}=\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \cdots \mathcal{O}_{N}\left(x_{N}\right)\right\rangle \tag{1}
\end{equation*}
$$

perhaps using chiral algebras à la [Beem et. al.] and defects [Liendo, Meneghelli]. Such approaches have been successful in the context of 2D CFT.

- We can also try to construct such theories via the RG flow (without ever explicitly discussing free fields)
- This necessarily implies $\mathcal{N}=4$ SUSY is emergent/accidental.

Motivation and Review (cont...)

- Basic idea behind accidental symmetry. Deform UV as in (2) follow to IR and find

$$
\begin{equation*}
S_{I R}=S_{C F T}+\int d^{4} x \tilde{\lambda}^{i} \tilde{\mathcal{O}}_{i} \tag{2}
\end{equation*}
$$

with $\widetilde{\mathcal{O}}_{i}$ irrelevant (so that $\widetilde{\lambda}_{i} \rightarrow 0$ as we flow to IR) and some of these operators break IR symmetries.

3D: $\mathcal{N}=0 \rightarrow \mathcal{N}=1,2$ [Balents, Fisher, Nayak], [Grover, Sheng, Vishwanath], [Lee], [Thomas], $\cdots . \mathcal{N}=3 \rightarrow \mathcal{N}=6,8$ [ABJM], $\cdots, \mathcal{N}=1 \rightarrow \mathcal{N}=2$ [Gaiotto, Komargodski, Wu], [Benini, Benvenuti]

4D: $\mathcal{N}=1 \rightarrow \mathcal{N}=2$ [Maruyoshi, Song], [Benvenuti, Giacomelli], [Aghaei, Amariti, Sekiguchi], $\cdots, \mathcal{N}=2 \rightarrow \mathcal{N}=4$ [Argyres, Lotito, Lu, Martone]

Motivation and Review (cont...)

- If via a vev, then UV could start from $\mathcal{N}=3,2,1,0$.
- If via a relevant deformation

$$
\begin{equation*}
\delta S \sim \int d^{4} x \lambda \mathcal{O} \tag{3}
\end{equation*}
$$

then $\mathcal{N}=2,1,0$.

- Here we will choose the latter option and $\mathcal{N}=2$. The reason is these theories are fairly controlled and still very exotic.

UV Starting Points

- UV starting points are 4D $\mathcal{N}=2$ SCFTs arising via twisted compactifications of $A_{N-1}(2,0)$ theory on $\mathcal{C}=\mathbb{C P}^{1}$ with one "irregular" puncture at $z=\infty$.

- Progress in finding space of irregular punctures [xie], [Bonelli, Maruyoshi, Tanzini], [M.B., Giacomelli, Papageorgakis, Nishinaka], [Xie, Ye], [Xie, Wang]. Generalizes [Gaiotto]. Wild frontier!

UV Starting Points (cont...)

- Useful to first compactify $(2,0)$ theory on $S^{1} \rightarrow$ 5D maximal SYM. Twisted vector multiplet furnishes

$$
\begin{equation*}
\Phi_{z}=z^{\ell-2} T_{\ell-2}+z^{\ell-3} T_{\ell-3}+\cdots+T_{0}+\frac{1}{z} T_{-1}+\cdots \tag{4}
\end{equation*}
$$

where $T \in \mathcal{M}_{N \times N}$ traceless (diagonal) and $\ell>1$ in \mathbb{Z}.

- Part of solution to Hitchin's equations: gives rise to Higgs branch of 3D mirror of S^{1} reduction of 4D theory \Rightarrow Coulomb branch of direct reduction and 4D theory too.
- For example, SW curve from

$$
\begin{equation*}
\operatorname{det}\left(x-\Phi_{z}\right)=0 \tag{5}
\end{equation*}
$$

UV Starting Points (cont...)

- Turns our theories can be specified by Young diagrams

$$
\begin{align*}
T_{i} \leftrightarrow Y_{i} & =\left[n_{i, 1}, n_{i, 2}, \cdots, n_{i, k_{i}}\right], \quad n_{i, a} \geq n_{i, a+1} \in \mathbb{Z}_{0} \\
\sum_{a=1}^{k_{i}} n_{i, a} & =N \tag{6}
\end{align*}
$$

where having some columns of height >1 implies a degeneracy-so-called "Type III" theories [Xie].

- Our theories of interest will have

$$
\begin{equation*}
Y_{1,0}=[n, \cdots, n], \quad Y_{-1}=[n, \cdots, n, n-1,1] \tag{7}
\end{equation*}
$$

where $n \geq 2, k_{1}=k_{0} \geq 3$ and $k_{-1}=k_{1}+1 \geq 4$ and so $N=n k$.

The Simplest RG Flow

- The simplest RG flow is from the UV theory given by

$$
\begin{equation*}
Y_{1,0}=[2,2,2], \quad Y_{-1}=[2,2,1,1] . \tag{8}
\end{equation*}
$$

- This description is abstract. Also obtain from duality involving well-known SCFTs [M.B., Giacomelli, Nishinaka, Papageorgakis]
- Start with the following $s u(3)$ theory

The Simplest RG Flow (cont...)

- Going to infinite coupling in exactly marginal $\tau_{s u(3)}$ leads to a dual "weakly coupled" $s u(2)$ description

$\tau_{3, \frac{3}{2}}-(2)-\left(A_{1}, D_{4}\right)$

- The $\mathcal{T}_{3, \frac{3}{2}}$ SCFT is another name for the theory with the Young diagrams in (8). It has $\mathcal{N}=2$ chiral ring generators of dimensions 3 and $3 / 2$ (so no 4D $\mathcal{N}=2$ Lagrangian).

The Simplest RG Flow (cont...)

- This latter theory is subtle, it splits as [M.B., Laczko, Nishinaka]

$$
\mathcal{T}_{3, \frac{3}{2}}=1 \oplus \mathcal{T}_{X}
$$

where \mathcal{T}_{X} is non-Lagrangian with flavor symmetry $s u(2) \times s u(3)$ (so that $\mathcal{T}_{3, \frac{3}{2}}$ has $s u(2)^{2} \times s u(3)$ flavor symmetry).

- First connection with $\mathcal{N}=4$: the su(2) flavor symmetry in \mathcal{T}_{X} has a global Witten anomaly

The Simplest RG Flow (cont...)

- More interesting connections come from noting Schur index of \mathcal{T}_{X} [M.B., Laczko, Nishinaka]

$$
\begin{align*}
\mathcal{I}_{\mathcal{T}_{X}}= & \sum_{\lambda=0}^{\infty} q^{\frac{3}{2} \lambda} \text { P.E. }\left[\frac{2 q^{2}}{1-q}+2 q-2 q^{1+\lambda}\right] \operatorname{ch}_{R_{\lambda}}^{s u(2)}(q, w) \times \\
& \times \operatorname{ch}_{R_{\lambda, \lambda}}^{s u(3)}\left(q, z_{1}, z_{2}\right) . \tag{9}
\end{align*}
$$

- This index is closely related to that of the T_{2} theory

$$
\begin{align*}
\mathcal{I}_{T_{2}}= & \sum_{\lambda=0}^{\infty} q^{\frac{\lambda}{2}} \text { P.E. }\left[\frac{2 q^{2}}{1-q}+2 q-2 q^{1+\lambda}\right] \operatorname{ch}_{R_{\lambda}}^{s u(2)}(q, x) \times \\
& \times \operatorname{ch}_{R_{\lambda}}^{s u(2)}(q, y) \operatorname{ch}_{R_{\lambda}}^{s u(2)}(q, z), \tag{10}
\end{align*}
$$

The Simplest RG Flow (cont...)

- Indeed, we can gauge a diagonal $s u(2)^{2} \subset s u(2)^{3} \subset s p(4)$ to get $\mathcal{N}=4$ (plus a decoupled hyper)

- Might then guess that we should do something involving a vector multiplet of $s u(3)$ to get $\mathcal{N}=4$ from $\mathcal{T}_{3, \frac{3}{2}}$.

The Simplest RG Flow (cont...)

- To see how to proceed, we take the limit

$$
\begin{equation*}
\lim _{q \rightarrow 1} \mathcal{I}_{\mathcal{T}_{3, \frac{3}{2}}} \sim Z_{S^{3}} \tag{11}
\end{equation*}
$$

with S^{3} partition function for the following [M.B., Laczko, Nishinaka]

where loop is in the $3+1$ of $s u(2) \subset u(2)$.

The Simplest RG Flow (cont...)

- Turning on $s u(3)$ masses yields the following in the IR

i.e., we flow to the same 3D $\mathcal{N}=8$ SCFT as the $u(2) 3 D \mathcal{N}=8$ gauge theory.
- This is the dimensional reduction of 4D $\mathcal{N}=4 u(2)$ SYM

The Simplest RG Flow (cont...)

- In particular, we have the following commuting diagram (for $n=2$ and $k=3$):

- Each arrow preserves 8 Poincaré supercharges. Commutation of above diagram strongly rests on this fact.

The Simplest RG Flow (cont...)

- What happens in the $r \rightarrow \infty$ limit? In particular:
(i) Is the IR theory in the $r \rightarrow \infty$ limit 4D $\mathcal{N}=4$?
(ii) Is it $u(2) \mathcal{N}=4$ SYM?
- The deformations make it clear that \mathcal{T}_{X} gives rise to an IR theory with a Witten anomaly for $s u(2)$.
- The existence of a 3D Lagrangian doesn't answer these questions.
- To gain some understanding, let's write down the SW curve.

The Simplest RG Flow (cont...)

- In this case, we have

$$
\begin{align*}
\Phi_{z} & =z \operatorname{diag}\left(a_{1}, a_{1}, a_{2}, a_{2},-a_{1}-a_{2},-a_{1}-a_{2}\right) \\
& +\operatorname{diag}\left(b_{1}, b_{1}, b_{2}, b_{2},-b_{1}-b_{2},-b_{1}-b_{2}\right) \\
& +\frac{1}{z} \operatorname{diag}\left(m_{1}, m_{1}, m_{2}, m_{2},-m_{1}-m_{2}+m_{3},-m_{1}-m_{2}-m_{3}\right) \\
& +\frac{1}{z^{2}} \operatorname{diag}\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5},-c_{1}-c_{2}-c_{3}-c_{4}-c_{5}\right)+\mathcal{O}\left(z^{-3}\right) \tag{12}
\end{align*}
$$

- We can compute the SW curve from the spectral curve

$$
\begin{equation*}
\operatorname{det}\left(x-\Phi_{z}\right)=0 \tag{13}
\end{equation*}
$$

The Simplest RG Flow (cont...)

- The SW curve is then

$$
\begin{align*}
u_{2} & +\left(\left(x-a_{1} z\right)\left(x-a_{2} z\right)\left(x+\left(a_{1}+a_{2}\right) z\right)+\frac{M_{1}}{2}\left(x-a_{1} z\right)\right. \\
& \left.+\frac{M_{2}}{2}\left(x-a_{2} z\right)-b\left(x-a_{1} z\right)\left(x-a_{2} z\right)\right)^{2}+M_{3}^{2}\left(x-a_{1} z\right)\left(x-a_{2} z\right) \\
& +u_{1}\left(-b\left(a_{1}-a_{2}\right)\left(x-a_{1} z\right)\left(x-a_{2} z\right)\right. \\
& -\left(x-a_{1} z\right)^{2}\left(x-a_{2} z\right)\left(a_{1}+2 a_{2}\right)+\left(x-a_{1} z\right)\left(x-a_{2} z\right)^{2}\left(2 a_{1}+a_{2}\right) \\
& \left.+\frac{a_{1}-a_{2}}{2}\left(M_{1}\left(x-a_{1} z\right)+M_{2}\left(x-a_{2} z\right)\right)\right)=0 \tag{14}
\end{align*}
$$

where

$$
\begin{align*}
M_{1} & =-2\left(a_{1}+2 a_{2}\right) m_{2}, \quad M_{2}=-2\left(2 a_{1}+a_{2}\right) m_{1} \\
M_{3}^{2} & =-\left(2 a_{1}+a_{2}\right)\left(a_{1}+2 a_{2}\right) m_{3}, u_{1}=-\left(2 a_{1}+a_{2}\right)\left(c_{1}+c_{2}\right)+2 b m_{1} \\
u_{2} & =\left(a_{1}-a_{2}\right)^{2}\left(\left(2 a_{1}+a_{2}\right) c_{1}-b m_{1}\right)\left(\left(2 a_{1}+a_{2}\right) c_{2}-b m_{1}\right) \\
& +\left(a_{1}-a_{2}\right)\left(2 a_{1}+a_{2}\right)\left(a_{1}+2 a_{2}\right) m_{1} m_{3}^{2} \tag{15}
\end{align*}
$$

The Simplest RG Flow (cont...)

- This describes the curve of $\mathcal{T}_{3, \frac{3}{2}}$. To get the curve of the IR theory, we introduce an RG parameter, m, and take a scaling limit $m \rightarrow \infty$.
- The only consistent scaling limit we have been able to find (up to isomorphisms) is

$$
\begin{aligned}
u_{1} & =0, \quad M_{1}=m, \quad M_{2}=0, \quad M_{3}=0, \quad b=q m^{\frac{1}{2}} \\
x-a_{1} z & =2 m^{-\frac{1}{2}} X, \quad x-a_{2} z=m^{\frac{1}{2}} Z, \quad u_{2}=-U m
\end{aligned}
$$

- Here, X and Z are good coordinates for the curve of the IR theory.

The Simplest RG Flow (cont...)

- Taking this limit yields

$$
\begin{equation*}
X^{2}=\frac{U}{\left(\frac{2\left(2 a_{1}+a_{2}\right)}{a_{1}-a_{2}} Z^{2}-2 q Z+1\right)^{2}} \tag{17}
\end{equation*}
$$

- This is the $\operatorname{su(2)} \mathcal{N}=4$ curve tuned to a cusp.
- Note that the putative marginal deformation, $q=b m^{-\frac{1}{2}}$, is irrelevant in the IR.
- These are the most general scaling limits we found. What does this mean?

The Simplest RG Flow (cont...)

- We haven't been able to disprove that there might be a more general scaling limit at play
- Another possibility is that the IR exactly marginal direction is only visible from a different UV starting point

The Simplest RG Flow (cont...)

- A final possibility is to have an exotic $\mathcal{N}=4$ theory in IR

Generalizations

- We can generalize the above picture considerably. For instance, take

$$
\begin{equation*}
Y_{1}=Y_{0}=[n, n, n], \quad Y_{-1}=[n, n, n-1,1] \tag{18}
\end{equation*}
$$

Also gives 4D SCFT with $\mathcal{N}=2$ chiral ring generators of dim

$$
\begin{equation*}
\Delta=\left\{\frac{3}{2}, 3, \frac{9}{2}, \cdots, \frac{3 n}{2}\right\} \tag{19}
\end{equation*}
$$

and S^{1} reduction

Generalizations (cont...)

- Even more generally, can take

$$
\begin{align*}
Y_{1,0}=[n, \cdots, n], \quad Y_{-1} & =[n, \cdots, n, n-1,1] \tag{20}\\
\text { where } n \geq 2, k_{1}=k_{0} \geq 3 & \text { and } k_{-1}
\end{align*}=k_{1}+1 \geq 4 \text { and so } N=n k . ~ \$
$$

- Now have

Generalizations (cont...)

- Similar story with dimensional reduction and mass terms

Conclusions and Open Questions

- Have found a new playground for engineering accidental SUSY enhancement.
- At least in $n=2, k=3$ case seem to have constructed a 4D $\mathcal{N}=4$ SCFT without ever discussing free fields.
- What is the nature of this 4D theory?
- Do we know everything there is to know about 4D $\mathcal{N}=4$? What about 6D (2,0), etc.?

