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Motivation and Review

Goals:

(i) Find a more unorthodox way to construct theories with 4D
N = 4 SUSY.

(ii) Find a more controlled set of examples in which to study
SUSY enhancement.

Why:
(i) Is the known space of N' = 4 theories complete?

(ii) Given UV data and deformations, can we predict IR SUSY
enhancement?



Motivation and Review (cont...)
e \We often assume the list of NN = 4 theories is known: take
some lie algebra, g, an N = 1 vector multiplet, three adjoint

chiral multiplets, and gauge.

e [ he gauge coupling, 7, is exactly marginal.




Motivation and Review (cont...)

e Various subtleties to do with the global structure of the gauge
group and extended operators [Aharony, Seiberg, Tachikawal,
[Argyres, Martone], [Garcia-Etxebarria].

e But, these discussions do not affect the local operator content.
Are there N = 4 theories that are more exotic?

e If 3 such (local) 7, then
(i) 7 has no weak coupling limit.
(ii) 7 has an exactly marginal deformation [Dolan, Osborn]

(iii) If 7 has an odd dimensional vacuum moduli space = global
Witten anomaly for su(2) C su(4)p.



Motivation and Review (cont...)
e How would we build such theories (if they exist!) in QFT?

e Starting in CFT via the bootstrap

C = (0O1(x1)02(z2) ---On(xN)) (1)

perhaps using chiral algebras a |a [Beem et. al.] and defects
[Liendo, Meneghellil. Such approaches have been successful in
the context of 2D CFT.

e We can also try to construct such theories via the RG flow
(without ever explicitly discussing free fields)

e This necessarily implies N' = 4 SUSY is emergent/accidental.
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Motivation and Review (cont...)

e Basic idea behind accidental symmetry. Deform UV as in (2)
follow to IR and find

Str = ScrrT + /d%;\i@z’ : (2)

with O; irrelevant (so that A\; — 0 as we flow to IR) and some of
these operators break IR symmetries.

3D: N =0 - N = 1,2 [Balents, Fisher, Nayak], [Grover,

Sheng, Vishwanath], [Leel, [Thomas], ---. N =3 — N = 6,8
[ABIM],---. N =1 — N =2 [Gaiotto, Komargodski, Wul], [Benini,
Benvenuti]

AD: N =1 — N = 2 [Maruyoshi, Song], [Benvenuti, Giacomelli],
[Aghaei, Amariti, Sekiguchil,---, N = 2 — N = 4 [Argyres,
Lotito, Lu, Martonel]



Motivation and Review (cont...)
e If via a vev, then UV could start from N =3,2,1,0.

e If via a relevant deformation

53 ~ / FrAO | (3)
then N =2,1,0.

e Here we will choose the latter option and NV = 2. The reason
IS these theories are fairly controlled and still very exotic.



UV Starting Points

e UV starting points are 4D N = 2 SCFTs arising via twisted
compactifications of Ax_1 (2,0) theory on C = CP! with one
“irregular’ puncture at z = .

e Progress in finding space of irregular punctures [Xie], [Bonelli,
Maruyoshi, Tanzini], [M.B., Giacomelli, Papageorgakis, Nishinaka],
[Xie, Yel, [Xie, Wang]. Generalizes [Gaiotto]. Wild frontier!

9



UV Starting Points (cont...)

e Useful to first compactify (2,0) theory on S! — 5D maximal
SYM. Twisted vector multiplet furnishes

B B 1
Pe= P T g A T+ T, (4)

where T € My« n traceless (diagonal) and £ > 1 in Z.

e Part of solution to Hitchin’s equations: gives rise to Higgs
branch of 3D mirror of St reduction of 4D theory = Coulomb
branch of direct reduction and 4D theory too.

e For example, SW curve from
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UV Starting Points (cont...)

e Turns our theories can be specified by Young diagrams

T, <Y, = [nj1,m0,,nik],  Njg>mn941 €20,

k;

> Mia = N. (6)
a=1

where having some columns of height > 1 implies a degeneracy—
so-called “Type III" theories [Xie].

e Our theories of interest will have

Y].,O: [’I’L,"',’I’L] ) Y_]_:[TL,"',’)’L,TL—].,].] ) (7)
wheren > 2, ki =kgp>3 and k.1 =k1+1>4 and so N = nk.
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The Simplest RG Flow
e [ he simplest RG flow is from the UV theory given by

Yl,o — [27272] ) Y_ 1= [2727 1, 1] . (8)

e T his description is abstract. Also obtain from duality involving
well-known SCFTs [M.B., Giacomelli, Nishinaka, Papageorgakis]

e Start with the following su(3) theory

(A1, Dy) — 3 )= (A1, Dy)

3
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The Simplest RG Flow (cont...)

e Going to infinite coupling in exactly marginal 7,3y leads to a
dual “weakly coupled” su(2) description

T,

)

3
2

@

(A17D4)

e The 7,3 SCFT is another name for the theory with the Young
12

diagrams in (8). It has N/ = 2 chiral ring generators of dimensions
3 and 3/2 (so no 4D N = 2 Lagrangian).
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The Simplest RG Flow (cont...)

e [ his latter theory is subtle, it splits as [M.B., Laczko, Nishinakal]

7?3,% — 1 D | Tx

where Ty is non-Lagrangian with flavor symmetry su(2) x su(3)
(so that T 3 has su(2)? x su(3) flavor symmetry).
2

e First connection with N' = 4: the su(2) flavor symmetry in Tx
has a global Witten anomaly
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The Simplest RG Flow (cont...)

e More interesting connections come from noting Schur index of
Tx [M.B., Laczko, Nishinaka]
00 2

3 2q
Tr, = Y ¢2'P.E. L — +2¢q — 2¢* T
A=0

3
xeh ) (0,71, 722) (9)

Chi%(Q)(q, w) X

e [ his index is closely related to that of the T theory

2q2

SN
Ir, = > q2 P.E. L -
A=0 q

xchin ) (g, 1)ch5 (g, 2) | (10)

+ 2q — 24T

ChSRuA(Q) (g, )X
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The Simplest RG Flow (cont...)

e Indeed, we can gauge a diagonal su(2)? C su(2)3 C sp(4) to
get N =4 (plus a decoupled hyper)

N

e Might then guess that we should do something involving a

vector multiplet of su(3) to get N'=4 from T, s.
2
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The Simplest RG Flow (cont...)

e [0 see how to proceed, we take the |limit

;mzf@% ~ Zgs (11)

with S3 partition function for the following [M.B., Laczko, Nishinaka]

u(2)— 3

where loop is in the 3 4+ 1 of su(2) C u(2).
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The Simplest RG Flow (cont...)

e Turning on su(3) masses yields the following in the IR
u(2)

i.e., we flow to the same 3D N =8 SCFT as theu(2) 3 DN =8
gauge theory.

e This is the dimensional reduction of 4D N = 4 u(2) SYM
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The Simplest RG Flow (cont...)

e In particular, we have the following commuting diagram (for
n =2 and k = 3):

oW =~ mipy + ...+ Mep—1 k-1
Uv ~ IR
7:ld 7:ld

gl Ch
oW 2 my (QuQ1 = Qu@r) + -+ mi (Qu1Qir — QuCi )

(o = (v

e Each arrow preserves 8 Poincaré supercharges. Commutation
of above diagram strongly rests on this fact.
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The Simplest RG Flow (cont...)
e \What happens in the » — oo limit? In particular:
(i) Is the IR theory in the r — oo limit 4D N = 47
(i) Is it w(2) N =4 SYM?

e The deformations make it clear that 7x gives rise to an IR
theory with a Witten anomaly for su(2).

e [ he existence of a 3D Lagrangian doesn’t answer these ques-
tions.

e TO gain some understanding, let's write down the SW curve.
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The Simplest RG Flow (cont...)

e In this case, we have

CDZ — Z diag(a'la ai,an,ap,—ajl] —ap,—aj — CLQ)
+ (]j-iag(bla b1,b2,b2, —b1 — bp, —b1 — b)
+ — diag(mlamlam27m27_m1 _m2+m3a_m1 _m2_m3)

z
1

+ = diag(cy, co,¢3, ¢4, 5, —C1 — ¢p — 3 — c4 — c5) + O(27>) (12)
e \We can compute the SW curve from the spectral curve

det(z — d,) =0 . (13)
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The Simplest RG Flow (cont...)

e [ he SW curve is then

uo> —+

+ 01

(&~ a12)(@ — a22) (x + (a1 +02)2) + 2@ — a12)

%(af; —anz) — b(z — a12)(z — anz))? + M32(ac —a1z)(x — anz)
u1( — blay —az)(z — a12)(z — azz)

(z — a12)?(z — az2) (a1 + 2a2) + (z — a12) (z — a22)*(2a1 + a2)

- ;GQ(M1($—CL1Z)+M2($—a22))) =0. (14)

—2(a1 +2ap)mo , Mo = —2(2a1 +az)my ,

—(2a1 + ap)(a1 + 2a2)m3 ,u; = —(2a1 + ap)(c1 + c2) + 2bmy
(a1 — a2)?((2a1 + ap)cy — bmy)((2a1 + an)ep — bmy)

(a1 — a2)(2a1 + ap) (a1 + 2az)mim3 . (15)
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The Simplest RG Flow (cont...)

e This describes the curve of 7;3. To get the curve of the IR
2

theory, we introduce an RG parameter, m, and take a scaling
limit m — oo.

e The only consistent scaling limit we have been able to find (up
to isomorphisms) is

1

U1 = O, Mlzm, MQZO, M3= . b=qm§,
1 1
r—aiz = 2m 22X, x—arxz=m2Z, upx=-Um (16)

e Here, X and Z are good coordinates for the curve of the IR
theory.
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The Simplest RG Flow (cont...)

e Taking this limit yields
U
Y2 — o (17)
(2(2a1+a2)22 —2q7 + 1)

aj—as

e This is the su(2) N = 4 curve tuned to a cusp.

1

e Note that the putative marginal deformation, ¢ = bm 2, is
irrelevant in the IR.

e [ hese are the most general scaling limits we found. What does
this mean?
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The Simplest RG Flow (cont...)

e \We haven’'t been able to disprove that there might be a more
general scaling limit at play

e Another possibility is that the IR exactly marginal direction is
only visible from a different UV starting point

T,
X o
T

X

X T

4D
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The Simplest RG Flow (cont...)

e A final possibility is to have an exotic N/ = 4 theory in IR
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Generalizations

e \We can generalize the above picture considerably. For instance,
take

Y]. — YO — [nnnan] ) Y—l — [n,n,n — 17 1] . (18)
Also gives 4D SCFT with N/ = 2 chiral ring generators of dim
3 9 3
A = {_ ) 3 Y o~ ) T —n} . (19)
2 2 2

and S! reduction

u(n) 3
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Generalizations (cont...)

e Even more generally, can take

Yl,O: [n7"'7n] ) Y—l:[na"'an7n_l71] ) (20)
wheren > 2, ki =kg>3 and k.1 =k1+1>4 and so N = nk.

e Now have
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Generalizations (cont...)

e Similar story with dimensional reduction and mass terms

oW mipr + ... +mg—1/k—1

Uv ~ IR
7Zld ’Eld

! Ck

W= my <Q1Q1—Qka> L Qk 1Qr—1 — Qka

SOL: =




Conclusions and Open Questions

e Have found a new playground for engineering accidental SUSY
enhancement.

e At least in n = 2,k = 3 case seem to have constructed a 4D
N = 4 SCFT without ever discussing free fields.

e What is the nature of this 4D theory?

e Do we know everything there is to know about 4D N = 47
What about 6D (2,0), etc.?
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