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Motivation and Review

Goals:

(i) Find a more unorthodox way to construct theories with 4D
N = 4 SUSY.

(ii) Find a more controlled set of examples in which to study
SUSY enhancement.

Why:

(i) Is the known space of N = 4 theories complete?

(ii) Given UV data and deformations, can we predict IR SUSY
enhancement?
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Motivation and Review (cont...)

• We often assume the list of N = 4 theories is known: take
some lie algebra, g, an N = 1 vector multiplet, three adjoint
chiral multiplets, and gauge.

• The gauge coupling, τ , is exactly marginal.

Re τ

Im τ

0 1

4



Motivation and Review (cont...)

• Various subtleties to do with the global structure of the gauge
group and extended operators [Aharony, Seiberg, Tachikawa],

[Argyres, Martone], [Garcı́a-Etxebarria].

• But, these discussions do not affect the local operator content.
Are there N = 4 theories that are more exotic?

• If ∃ such (local) T , then

(i) T has no weak coupling limit.

(ii) T has an exactly marginal deformation [Dolan, Osborn]

(iii) If T has an odd dimensional vacuum moduli space ⇒ global
Witten anomaly for su(2) ⊂ su(4)R.
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Motivation and Review (cont...)

• How would we build such theories (if they exist!) in QFT?

• Starting in CFT via the bootstrap

C = 〈O1(x1)O2(x2) · · · ON(xN)〉 , (1)

perhaps using chiral algebras à la [Beem et. al.] and defects

[Liendo, Meneghelli]. Such approaches have been successful in

the context of 2D CFT.

• We can also try to construct such theories via the RG flow

(without ever explicitly discussing free fields)

• This necessarily implies N = 4 SUSY is emergent/accidental.
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Motivation and Review (cont...)

• Basic idea behind accidental symmetry. Deform UV as in (2)
follow to IR and find

SIR = SCFT +
∫
d4xλ̃iÕi , (2)

with Õi irrelevant (so that λ̃i → 0 as we flow to IR) and some of
these operators break IR symmetries.

3D: N = 0 → N = 1,2 [Balents, Fisher, Nayak], [Grover,

Sheng, Vishwanath], [Lee], [Thomas], · · ·. N = 3 → N = 6,8
[ABJM],· · ·. N = 1→ N = 2 [Gaiotto, Komargodski, Wu], [Benini,

Benvenuti]

4D: N = 1→ N = 2 [Maruyoshi, Song], [Benvenuti, Giacomelli],

[Aghaei, Amariti, Sekiguchi],· · ·, N = 2 → N = 4 [Argyres,

Lotito, Lu, Martone]
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Motivation and Review (cont...)

• If via a vev, then UV could start from N = 3,2,1,0.

• If via a relevant deformation

δS ∼
∫
d4xλO , (3)

then N = 2,1,0.

• Here we will choose the latter option and N = 2. The reason

is these theories are fairly controlled and still very exotic.
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UV Starting Points

• UV starting points are 4D N = 2 SCFTs arising via twisted
compactifications of AN−1 (2,0) theory on C = CP1 with one
“irregular” puncture at z =∞.

,

• Progress in finding space of irregular punctures [Xie], [Bonelli,

Maruyoshi, Tanzini], [M.B., Giacomelli, Papageorgakis, Nishinaka],

[Xie, Ye], [Xie, Wang]. Generalizes [Gaiotto]. Wild frontier!
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UV Starting Points (cont...)

• Useful to first compactify (2,0) theory on S1 → 5D maximal

SYM. Twisted vector multiplet furnishes

Φz = z`−2T`−2 + z`−3T`−3 + · · ·+ T0 +
1

z
T−1 + · · · , (4)

where T ∈MN×N traceless (diagonal) and ` > 1 in Z.

• Part of solution to Hitchin’s equations: gives rise to Higgs

branch of 3D mirror of S1 reduction of 4D theory ⇒ Coulomb

branch of direct reduction and 4D theory too.

• For example, SW curve from

det(x−Φz) = 0 . (5)
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UV Starting Points (cont...)

• Turns our theories can be specified by Young diagrams

Ti ↔ Yi = [ni,1, ni,2, · · · , ni,ki] , ni,a ≥ ni,a+1 ∈ Z0 ,
ki∑
a=1

ni,a = N . (6)

where having some columns of height > 1 implies a degeneracy—

so-called “Type III” theories [Xie].

• Our theories of interest will have

Y1,0 = [n, · · · , n] , Y−1 = [n, · · · , n, n− 1,1] , (7)

where n ≥ 2, k1 = k0 ≥ 3 and k−1 = k1 + 1 ≥ 4 and so N = nk.
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The Simplest RG Flow

• The simplest RG flow is from the UV theory given by

Y1,0 = [2,2,2] , Y−1 = [2,2,1,1] . (8)

• This description is abstract. Also obtain from duality involving
well-known SCFTs [M.B., Giacomelli, Nishinaka, Papageorgakis]

• Start with the following su(3) theory

(A1, D4) 3 (A1, D4)

3

Fig. 1: The quiver diagram describing the simplest (i.e., lowest rank) AD generalization

of Argyres-Seiberg duality in the SU(3) duality frame. The total flavor symmetry is U(3).

In [11], this theory was called the “T3,2, 3
2
, 3
2
” SCFT.

One can then proceed to construct a conformal manifold consisting only of arbitrarily many

TN theories and conformal gauge fields.

While the above set of theories is quite vast, the TN theories (and their cousins) are

somewhat special: their N = 2 chiral primaries have integer scaling dimensions.6 The

underlying reason is that these theories emerge in a duality with a Lagrangian theory.7 On

the other hand, the most generally allowed values for the scaling dimensions, �i, of N = 2

chiral operators are widely believed to be �i 2 Q, and non-integer rational values are indeed

realized in so-called Argyres-Douglas (AD) theories [8–10].8 These theories cannot emerge

in an N = 2 S-duality with a Lagrangian theory.

Motivated by a desire to understand N = 2 S-duality more broadly, it is then natural

to ask what is the minimal (which we will define to be lowest rank9) AD generalization of

Argyres-Seiberg (i.e., non self-similar) duality [11]. Since the starting point cannot be a

Lagrangian theory, one must engineer such a conformal manifold from a weakly coupled

gauging of a global symmetry of a collection of AD building blocks (potentially with

additional hypermultiplets). An answer, using general consistency conditions and the class

S Argyres-Douglas theories in [10], was given in [11] and is reproduced in Fig. 1 (there,

this theory was referred to as the “T3,2, 3
2
, 3
2
” SCFT). This theory is constructed by gauging

the diagonal SU(3) symmetry of three fundamental flavors and a pair of (A1, D4) SCFTs

(the (A1, D4) theory, originally discussed in [9], has SU(3) flavor symmetry and a single

6By N = 2 chiral primaries, we mean superconformal primaries that are annihilated by all the anti-chiral

Poincaré supercharges of N = 2 SUSY.
7By the rules of [6], N = 2 chiral operators cannot disappear from the spectrum or, by the discussion in [7],

have their dimensions renormalized as we vary ⌧ , so the TN N = 2 chiral ring generators must correspond to

some subset of the gauge Casimirs of a Lagrangian theory.
8We define any N = 2 SCFT with non-integer scaling dimension chiral primaries to be of AD type.
9By rank, we mean the complex dimension of the Coulomb branch.

3
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The Simplest RG Flow (cont...)

• Going to infinite coupling in exactly marginal τsu(3) leads to a

dual “weakly coupled” su(2) description

T3, 3
2

2 (A1, D4)

Fig. 2: The quiver diagram describing the theory dual to the one in Fig. 1. The

SU(3) ⇢ U(3) symmetry is furnished by the T3, 3
2

theory while the U(1) ⇢ U(3) symmetry

is furnished by the (A1, D4) SCFT. In [11], this theory was called the “T3,2, 3
2
, 3
2
” SCFT.

N = 2 chiral ring generator of dimension 3/2). The resulting global symmetry is U(3) and

is furnished by the three fundamental flavors.

The S-dual frame of this theory is given in Fig. 2 and consists of an SU(2) gauge theory

coupled to an (A1, D4) factor and a more exotic AD theory called the T3, 3
2

SCFT [11] which

has flavor symmetry G � SU(3) ⇥ SU(2).10 Therefore, in rough analogy with Argyres-

Seiberg duality, the strongly coupled (A1, D4) theory plays the role of the hypermultiplets

on the SU(2) side of the duality and the T3, 3
2

theory plays the role of the E6 = T3 theory.

However, upon closer inspection, the analogy with Argyres-Seiberg duality seems to

break down. Indeed, the anomalies of the T3, 3
2

theory were computed in [11] and found to

be

k
T
3, 32

SU(2) = 5 , k
T
3, 32

SU(3) = 6 , c
T
3, 32 =

9

4
, a

T
3, 32 = 2 . (1.3)

Using these symmetries, one cannot construct conformal manifolds built only out of arbitrary

numbers of T3, 3
2

SCFTs and conformal gauge fields. The reason is that the contribution

to the SU(2) beta function in (1.3) is too large and the required SU(2) gauging would be

infrared (IR) free. This state of a↵airs is quite unlike the E6 = T3 case described above,

where an arbitrary number of such theories can be concatenated by gauging enough diagonal

symmetries.

Still, there are some puzzles in the above picture. To begin with, the flavor symmetry

group of the T3, 3
2

theory is not obvious. One standard way to find such symmetries for SCFTs

that, like the T3, 3
2

theory, can be derived from M5-branes wrapping a (punctured) Riemann

surface, C, (so-called class S theories) is to construct the Hitchin system corresponding to

the theory [10, 12]. In particular, the Hitchin system has a meromorphic 1-form, '(z)dz,

with singularities at the punctures of C. In the case of the T3, 3
2

SCFT, one can construct

10This latter theory first appeared in the classification of [10] (using the nomenclature of this paper, T3, 3
2

is a “Type III” theory with Young diagrams [2, 2, 2], [2, 2, 2], [2, 2, 1, 1]).

4

• The T
3,32

SCFT is another name for the theory with the Young

diagrams in (8). It has N = 2 chiral ring generators of dimensions

3 and 3/2 (so no 4D N = 2 Lagrangian).
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The Simplest RG Flow (cont...)

• This latter theory is subtle, it splits as [M.B., Laczko, Nishinaka]

T3, 3
2

= 1 � TX

Fig. 4: The factorized form of the T3, 3
2

SCFT into a decoupled free hypermultiplet and the

interacting TX SCFT.

one expects, upon performing an S1 reduction, the enhancement of GT
3, 32

! SU(3)⇥SU(2)2

with a decoupled hypermultiplet.

A priori, there are various possible resolutions to the di↵erent predictions for GT
3, 32

. First,

it could be that the extra SU(2) factor is an accidental symmetry at energies E ⌧ R�1

(where R is the radius of the compactification circle). Second, it could be that the 4D

description around (1.4) from the M5 brane simply misses some flavor symmetries.13 Finally,

it could be that neither description gets the correct symmetries.

We claim the 3D quiver of Fig. 3 captures the full flavor symmetry and the 4D description

around (1.4) does not. In particular, we will argue that the T3, 3
2

SCFT splits into a free

hypermultiplet and an interacting theory, TX , as in Fig. 4 and that the SU(2) symmetry

detected around (1.4) corresponds to a diagonal subgroup of the SU(2)2 ⇢ GT
3, 32

factor.

Happily, the interacting TX theory then has (N = 2) flavor symmetry GTX
= SU(3)⇥SU(2)

and the following anomalies14

kTX

SU(2) = 4 , kTX

SU(3) = 6 , cTX =
13

6
, aTX =

47

24
. (1.6)

In particular, we can now, in more direct analogy with the E6 = T3 theory, construct

suggest that the presence of a free monopole operator can be detected by looking at each gauge node in the

quiver and counting the number of local flavors. If this number reaches a certain threshold, then the theory

produces a free monopole after one turns on the corresponding gauge coupling(s) and flows to the IR (the

theory is then referred to as “ugly” in the nomenclature of [13]). However, it is straightforward to check that

the quiver in Fig. 3 should have no free monopoles by the tests of [13] and no accidental superconformal R

symmetries. The resolution to this puzzle is that the free monopole depends on the global topology of the

quiver—it has non-trivial flux through each gauge node—and so the linear quiver rules of [13] do not apply.
13A similar phenomenon occurs in some theories with only regular punctures.
14Somewhat intriguingly, as an N = 1 theory, the flavor symmetry is SU(3) ⇥ SU(2) ⇥ U(1). Note that

since the U(1) symmetry comes from the N = 2 U(1)R ⇥ SU(2)R symmetry, it is chiral (although the

SU(3) ⇥ SU(2) factors are not by the general analysis of [15]). We are not aware of another method in field

or string theory to impose a minimality condition and find SU(3) ⇥ SU(2) ⇥ U(1) as a set of symmetries.

However, note that these are genuine (global) symmetries and not gauge symmetries as in the Standard

Model.

6

,

where TX is non-Lagrangian with flavor symmetry su(2)× su(3)

(so that T
3,32

has su(2)2 × su(3) flavor symmetry).

• First connection with N = 4: the su(2) flavor symmetry in TX
has a global Witten anomaly

14



The Simplest RG Flow (cont...)

• More interesting connections come from noting Schur index of

TX [M.B., Laczko, Nishinaka]

ITX =
∞∑
λ=0

q
3
2λP.E.

[
2q2

1− q + 2q − 2q1+λ

]
chsu(2)

Rλ
(q, w)×

×chsu(3)
Rλ,λ

(q, z1, z2) . (9)

• This index is closely related to that of the T2 theory

IT2
=

∞∑
λ=0

q
λ
2 P.E.

[
2q2

1− q + 2q − 2q1+λ

]
chsu(2)

Rλ
(q, x)×

×chsu(2)
Rλ

(q, y)chsu(2)
Rλ

(q, z) , (10)
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The Simplest RG Flow (cont...)

• Indeed, we can gauge a diagonal su(2)2 ⊂ su(2)3 ⊂ sp(4) to

get N = 4 (plus a decoupled hyper)

• Might then guess that we should do something involving a

vector multiplet of su(3) to get N = 4 from T
3,32

.
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The Simplest RG Flow (cont...)

• To see how to proceed, we take the limit

lim
q→1
IT

3,32

∼ ZS3 (11)

with S3 partition function for the following [M.B., Laczko, Nishinaka]

u(2) 3

Fig. 1: The quiver corresponding to the S1 reduction of the T3, 3
2

SCFT [11]. Here the

closed loop attached to the gauge node denotes an adjoint hypermultiplet of u(2). This

adjoint breaks up into a 3 + 1 of su(2) ⇢ u(2), with the singlet corresponding to the free

decoupled hyper in T3, 3
2

= TX � hyper [11].

u(2) u(2)

u(2)

1

Fig.2: The quiver corresponding to the mirror of the S1 reduction of the T3, 3
2

theory [11,12].

The Young diagrams describing the T3, 3
2

theory are Y1,0 = [2, 2, 2], Y�1 = [2, 2, 1, 1] [12].

TX ⇢ T3, 3
2

theory) has a global Witten anomaly [11].16 More generally, it follows from

anomaly matching that any N = 4 theory (Lagrangian or not) with a rank one Coulomb

branch (by which we mean that the low energy theory consists of a massless U(1) N = 4

vector multiplet at generic points along the three-real-dimensional moduli space) must have

a non-vanishing Witten anomaly for the su(2) ⇢ su(4)R N = 2 symmetry.17

Another connection between the T3, 3
2

SCFT and N = 4 can be found by, instead of

introducing dynamical gauge fields (for su(2)⇥ su(2)) as in the T2 case, introducing vevs for

background gauge fields (i.e., mass terms) for the su(3) symmetry. This statement is most

obvious by first considering the S1 reduction of the T3, 3
2

theory. At the level of the index

(3.2), this reduction is implemented by taking q ! 1 (which corresponds to taking the radius

of the S1 ⇢ S1 ⇥ S3 factor in the index to zero) and throwing away a flavor-independent

divergent prefactor that encodes certain anomalies of the 4D theory (see [28]). Performing

this procedure, we showed in [11] that (3.2) reduces to the S3 partition function of the

16In the su(2) N = 4 case, this statement follows from the fact that the adjoint hypermultiplet transforms

as three doublets of the su(2) ⇢ su(4)R symmetry. By similar reasoning, there is a non-vanishing Witten

anomaly for this symmetry in su(2r) N = 4 theories.
17This statement generalizes for odd rank N = 4 theories (again without appealing to the existence of a

Lagrangian).

7

where loop is in the 3 + 1 of su(2) ⊂ u(2).
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The Simplest RG Flow (cont...)

• Turning on su(3) masses yields the following in the IR

u(2)

Fig. 3: The quiver describing the endpoint of the flow initiated by turning on generic su(3)

mass parameters in Fig. 1. We find a u(2) N = 8 theory (the u(1) piece becomes a direct

sum of a twisted hypermultiplet and a conventional hypermultiplet).

u(2) 1

Fig. 4: The quiver corresponding to the IR endpoint of the RG flow from Fig. 1 after

turning on masses for two fundamental flavors (these are non-generic su(3) mass parameters

in (3.5)). This theory has accidental N = 8 supersymmetry in the IR as in Fig. 3 [30].

3D theory in Fig. 1. This result confirms the rules conjectured in [12], which produce the

mirror quiver gauge theory in Fig. 2 (e.g., see [29]).

From Fig. 1, it is clear that if we turn on any superpotential mass term for the

fundamental flavors we will flow to an N = 8 SCFT that is the IR endpoint of the usual

N = 8 u(2) SYM flow.18 This theory is then the same as the dimensional reduction of the

u(2) 4D N = 4 theory.

To see that we end up with 3D N = 8 for any value of the superpotential mass terms,

note that these mass terms are valued in the adjoint of su(3) and can be parameterized as

follows

m = diag(m1, m2,�m1 � m2) . (3.5)

Therefore, turning on generic m1,2 results in giving masses to all the fundamental flavors,

and we are left with the N = 8 quiver in Fig. 3. On the other hand, if we choose m1 6= 0

with m2 = 0, m1 = 0 with m2 6= 0, or m1,2 6= 0 with m1 + m2 = 0, we give mass to two out

of the three fundamental flavors and obtain the quiver in Fig. 4. However, as is well-known

(e.g., see [30]), this theory flows to the N = 8 quiver of Fig. 3 in the IR.

Combining the procedure of putting the theory on a circle with turning on su(3) mass

terms gives us our desired RG flow from sixteen to thirty-two supercharges (see Fig. 5

18It is also clear that the Witten anomaly of the 4D TX theory is reflected in the fact that there are three

doublets of the flavor su(2) arising from the adjoint hypermultiplet of su(2) ⇢ u(2).

8

i.e., we flow to the same 3D N = 8 SCFT as the u(2) 3D N = 8

gauge theory.

• This is the dimensional reduction of 4D N = 4 u(2) SYM

18



The Simplest RG Flow (cont...)

• In particular, we have the following commuting diagram (for

n = 2 and k = 3):

• Each arrow preserves 8 Poincaré supercharges. Commutation

of above diagram strongly rests on this fact.
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The Simplest RG Flow (cont...)

• What happens in the r →∞ limit? In particular:

(i) Is the IR theory in the r →∞ limit 4D N = 4?

(ii) Is it u(2) N = 4 SYM?

• The deformations make it clear that TX gives rise to an IR

theory with a Witten anomaly for su(2).

• The existence of a 3D Lagrangian doesn’t answer these ques-

tions.

• To gain some understanding, let’s write down the SW curve.
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The Simplest RG Flow (cont...)

• In this case, we have

Φz = z diag(a1, a1, a2, a2,−a1 − a2,−a1 − a2)

+ diag(b1, b1, b2, b2,−b1 − b2,−b1 − b2)

+
1

z
diag(m1,m1,m2,m2,−m1 −m2 +m3,−m1 −m2 −m3)

+
1

z2
diag(c1, c2, c3, c4, c5,−c1 − c2 − c3 − c4 − c5) +O(z−3) (12)

• We can compute the SW curve from the spectral curve

det(x−Φz) = 0 . (13)

21



The Simplest RG Flow (cont...)

• The SW curve is then

u2 + ((x− a1z)(x− a2z)(x+ (a1 + a2)z) +
M1

2
(x− a1z)

+
M2

2
(x− a2z)− b(x− a1z)(x− a2z))2 +M2

3 (x− a1z)(x− a2z)

+ u1(− b(a1 − a2)(x− a1z)(x− a2z)
− (x− a1z)2(x− a2z)(a1 + 2a2) + (x− a1z)(x− a2z)2(2a1 + a2)

+
a1 − a2

2
(M1(x− a1z) +M2(x− a2z))) = 0 . (14)

where

M1 = −2(a1 + 2a2)m2 , M2 = −2(2a1 + a2)m1 ,

M2
3 = −(2a1 + a2)(a1 + 2a2)m2

3 , u1 = −(2a1 + a2)(c1 + c2) + 2bm1 ,

u2 = (a1 − a2)2((2a1 + a2)c1 − bm1)((2a1 + a2)c2 − bm1)
+ (a1 − a2)(2a1 + a2)(a1 + 2a2)m1m

2
3 . (15)

22



The Simplest RG Flow (cont...)

• This describes the curve of T
3,32

. To get the curve of the IR

theory, we introduce an RG parameter, m, and take a scaling

limit m→∞.

• The only consistent scaling limit we have been able to find (up

to isomorphisms) is

u1 = 0 , M1 = m , M2 = 0 , M3 = 0 , b = qm
1
2 ,

x− a1z = 2m−
1
2X , x− a2z = m

1
2Z , u2 = −Um . (16)

• Here, X and Z are good coordinates for the curve of the IR

theory.

23



The Simplest RG Flow (cont...)

• Taking this limit yields

X2 =
U(

2(2a1+a2)
a1−a2

Z2 − 2qZ + 1
)2 . (17)

• This is the su(2) N = 4 curve tuned to a cusp.

• Note that the putative marginal deformation, q = bm−
1
2, is

irrelevant in the IR.

• These are the most general scaling limits we found. What does

this mean?
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The Simplest RG Flow (cont...)

• We haven’t been able to disprove that there might be a more
general scaling limit at play

• Another possibility is that the IR exactly marginal direction is
only visible from a different UV starting point

X

X

X

T4D

UV

T4D

IR

T4D

UV
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The Simplest RG Flow (cont...)

• A final possibility is to have an exotic N = 4 theory in IR

X
X

X

X

X

T4D

IR

M
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Generalizations

•We can generalize the above picture considerably. For instance,

take

Y1 = Y0 = [n, n, n] , Y−1 = [n, n, n− 1,1] . (18)

Also gives 4D SCFT with N = 2 chiral ring generators of dim

∆ =
{

3

2
, 3 ,

9

2
, · · · , 3n

2

}
. (19)

and S1 reduction

u(n) u(n)

u(n)

1

Fig. 6: The quiver corresponding to the mirror of the S1 reduction of the type III AD

theory with Y1,0 = [n, n, n], Y�1 = [n, n, n � 1, 1] [12].

u(n) 3

Fig. 7: The quiver corresponding to the S1 reduction of the type III AD theory with

Y1,0 = [n, n, n], Y�1 = [n, n, n � 1, 1]. The closed loop attached to the gauge node denotes

an adjoint hypermultiplet of u(n).

Note that, as in N = 4, the scaling dimensions of chiral operators are integer multiples of

the dimension of the lowest dimensional chiral operator (although here, unlike in N = 4,

the scaling dimension of the lowest dimensional chiral operator is half-integer).27

In this case, the 3D mirror quiver generalizing Fig. 2 is given in Fig. 6 following the

rules in [12]. The mirror of this quiver (i.e., the direct S1 reduction) is the u(n) theory

with an adjoint hypermultiplet and three fundamental flavors as in Fig. 7 (e.g., see the

discussion in [29]).

We may then reproduce the discussion for n = 2 for general n � 2 by turning on masses

for the three fundamental flavors in the S1 reduction. For generic masses, we end up with

the quiver in Fig. 8. For non-generic su(3) masses, we end up with the quiver in Fig. 9,

which, by the discussion in [30], flows to the 3D N = 8 quiver in Fig. 8. By combining

u(n)

Fig. 8: The result of turning on generic su(3) masses in the quiver in Fig. 7.

27In fact, the scaling dimensions of the operators in (4.2) correspond to those of u(n) N = 4 SYM up to

an overall multiplication by 3/2.

14
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Generalizations (cont...)

• Even more generally, can take

Y1,0 = [n, · · · , n] , Y−1 = [n, · · · , n, n− 1,1] , (20)

where n ≥ 2, k1 = k0 ≥ 3 and k−1 = k1 + 1 ≥ 4 and so N = nk.

• Now have

u(n) 1

Fig. 9: The result of turning on masses for two out of the three flavors in Fig. 8. Quantum

mechanically, this remaining fundamental flavor also gets a mass [30].

u(n) k

Fig. 10: The quiver corresponding to the S1 reduction of the type III AD theory with

Young diagrams described in (4.3). The closed loop attached to the gauge node denotes an

adjoint hypermultiplet of u(n).

the procedure of S1 reduction with turning on masses, we again, as in the more detailed

discussion of the n = 2 case, get the commuting RG diagram of Fig. 5 with accidental

enhancement to thirty-two (Poincaré plus special) supercharges in the IR. We again suspect

(but have not proven) that the r ! 1 limit of this flow has N = 4 SUSY.

Finally, note that we can have an even more general UV starting point given by

Y1,0 = [n, n, · · · , n] , Y�1 = [n, · · · , n, n � 1, 1] , (4.3)

where, as in (2.6), n � 2, there are k � 3 columns in Y0,1, and there are k + 1 � 4 columns

in Y�1 (so that N = nk, where we obtain our theory from the AN�1 (2, 0) theory). Here

the mirror looks as in Fig. 6, but now there is a k-sided polygon of u(n) nodes with one

node coupled to a fundamental flavor. The direct reduction of the theory is given in Fig.

10. Just as in the previous cases, we may give masses to these k fundamental flavors and

flow to a theory with thirty-two (Poincaré plus special) supercharges, thus obtaining the

RG diagram in Fig. 5.

5. Conclusions

In this note we have studied an infinite set of RG flows that start from 4D N = 2 SCFTs

that lack a Lagrangian description and end up, after turning on generalized mass terms,

flowing to theories that have thirty-two (Poincaré plus special) supercharges. We are able
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Generalizations (cont...)

• Similar story with dimensional reduction and mass terms
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Conclusions and Open Questions

• Have found a new playground for engineering accidental SUSY

enhancement.

• At least in n = 2, k = 3 case seem to have constructed a 4D

N = 4 SCFT without ever discussing free fields.

• What is the nature of this 4D theory?

• Do we know everything there is to know about 4D N = 4?

What about 6D (2,0), etc.?
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