T[SU(N)] duality webs

Sara Pasquetti

Milano-Bicocca University

Supersymmetric theories, dualities and deformations, Bern, 17-18/07/2018

based on arXiv:1712.08140 with Nedelin and Zenkevich, arXiv:1808.XXXX with Aprile and work in progress with Aprile, Nedelin, Sacchi and Zenkevich

- T[SU(N)] duality web and its deformations
- > 3d spectral dualities from 5d fiber-base dualities via Higgsing
- spectral dualities and gauge/q-CFT correspondence

3d $\mathcal{N} = 2$ basics

Field content:

- ▶ Vector multiplets: $V = (A_{\mu}, \lambda, \sigma \in \mathbb{R}, aux)$
- Adjoint chiral multiplets: $\Phi = (\phi \in \mathbb{C}, fermions, aux)$
- ▶ Matter chiral multiplets: $Q_i = (Q_i \in \mathbb{C}, fermions, aux)$
- One can also introduce the linear multiplets: $\Sigma = (\sigma, ..., F_{\mu\nu})$.

The moduli space of vacua contains the pure Higgs branch where $\langle Q_i \rangle \neq 0$ and $\langle \sigma \rangle = 0$, Coulomb branch where σ gets a vev which breaks the gauge group to its Cartan: $G \to U(1)^r$, Mixed branches.

In the bulk of the (abelianised) Coulomb branch one can dualise the gauge fields to scalars: $F^j_{\mu\nu} = \epsilon_{\mu\nu\rho}\partial^\rho\gamma_j$, $j = 1, \cdots r$.

The currents $J^{j}_{\mu} = \epsilon_{\mu\nu\rho} (F^{\nu\rho})^{j}$ generate the topological symmetry $(U(1)_{J})^{r}$ which shifts the dual photons γ_{j} .

A set of convenient coordinates on the classical Coulomb branch are:

$$X_j \sim e^{\Phi_j}, \ \ \Phi_j = rac{2\pi\sigma_j}{g_3^2} + i\gamma_j, \ \ \ j = 1, \cdots, r$$

Quantum corrections can lift the Coulomb branch. For $U(N_c)$ with $N_f > N_c$ only $X_+ \sim e^{(\frac{\pi \sigma_1}{g_3} + i\gamma_1)}, X_- \sim e^{-(\frac{\pi \sigma_{N_c}}{g_3} + i\gamma_{N_c})}$ survive.

The un-lifted coordinates are identified with half BPS monopoles, local disorder operators. Their charges under any Abelian symmetry is computed by

$$\delta Q(\mathfrak{M}) = -rac{1}{2} \sum_{ ext{fermions } \psi} Q(\psi) \left|
ho_{\psi}(\mathfrak{m})
ight| \, .$$

where the fermions ψ transform with ρ_{ψ} under the gauge group.

Aharony-like dualities & monopole deformations

Aharony duality:

 \mathcal{T} : $U(N_c)$ with N_f flav. $Q, \tilde{Q}, \mathcal{W} = 0$

 \mathcal{T}' : $U(N_f - N_c)$ with N_f flav. $q, \tilde{q}, \mathcal{W} = S_- \hat{\mathfrak{M}}^+ + S_+ \hat{\mathfrak{M}}^- + Mq\tilde{q}$

- ► Monopole duality I: [Benini-Benvenuti-SP] $\mathcal{T}_{\mathfrak{M}}$: $U(N_c)$ with N_f flav. $Q, \tilde{Q}, \mathcal{W} = \mathfrak{M}^+ + \mathfrak{M}^ \mathcal{T}'_{\mathfrak{M}}$: $U(N_f - N_c - 2)$ with N_f flavors $q, \tilde{q}, \mathcal{W} = \hat{\mathfrak{M}}^+ + \hat{\mathfrak{M}}^- + Mq\tilde{q}$
- ► Monopole duality II: [Benini-Benvenuti-SP] $\mathcal{T}_{\mathfrak{M}}$: $U(N_c)$ with N_f flav. $Q, \tilde{Q}, \mathcal{W} = \mathfrak{M}^+$ $\mathcal{T}'_{\mathfrak{M}}$: $U(N_f - N_c - 1)$ with N_f flav. $q, \tilde{q}, \mathcal{W} = \hat{\mathfrak{M}}^- + S_+ \hat{\mathfrak{M}}^+ + Mq\tilde{q}$.

Monopole super-potentials naturally appear in 4d-3d reductions [Aharony-Razamat-Seibger-Willett]. Generalizations to UsP(N), O(N) groups, higher monopole deformations [Amariti-Garozzo-Mekareeya], quivers [Amariti-Orlando-Reffert], \cdots

T[SU(N)]

The $\mathcal{N} = 4 T[SU(N)]$ theory [Gaiotto-Witten] is a quiver theory

with $\mathcal{W}_{\mathcal{T}[SU(N)]} = \sum_{k=1}^{N-1} \operatorname{Tr}_{k} \left[\Phi_{k} \left(\operatorname{Tr}_{k+1} \mathbb{Q}^{(k,k+1)} - \operatorname{Tr}_{k-1} \mathbb{Q}^{(k-1,k)} \right) \right],$ with bifund. $\mathbb{Q}^{(L,R)} = Q_{ab}^{(L,R)} \tilde{Q}_{\tilde{a}\tilde{b}}^{(L,R)}.$

- Global symmetry: $SU(N)_F \times SU(N)_{top}$
- ▶ Self-dual under mirror symmetry: Coulomb ↔ Higgs branch
- ▶ Real masses M_p , T_p in $SU(N)_F \times SU(N)_{top}$
- ▶ Real axial mass $m_A \in SU(2)_C \times SU(2)_H$ breaking to $\mathcal{N} = 2^*$
- The mass deformed theory has N! isolated vacua

T[SU(N)] and its mirror dual $T[SU(N)]^V$

The chiral ring generators are the mesons on the Higgs branch:

$$Q_{ij} \equiv \operatorname{Tr}_N \mathbb{Q}^{(N-1,N)} \equiv Q_i \tilde{Q}_j, \qquad R[Q_{ij}] = 2r$$

and the monopole operators on the Coulomb branch:

$$\mathcal{M}_{ij} \equiv \left(egin{array}{cccc} {
m Tr} \Phi^{(1)} & \mathcal{M}^{100} & \mathcal{M}^{110} & \mathcal{M}^{111} \\ \mathcal{M}^{-100} & {
m Tr} \Phi^{(2)} & \mathcal{M}^{010} & \mathcal{M}^{011} \\ \dots & \dots & \dots & \dots \end{array}
ight) \,, \qquad \mathcal{R}[\mathcal{M}_{ij}] = 2 - 2r \,.$$

In the mirror (self)-dual theory $T[SU(N)]^V$ we have dual mesons on the Higgs branch with $R[\mathcal{P}_{ij}] = 2 - 2r$ and the monopole matrix with $R[\mathcal{N}_{ij}] = 2r$ on the Coulomb branch.

Operator map:

$$\mathcal{Q}_{ij} \leftrightarrow \mathcal{N}_{ij} , \qquad \qquad \mathcal{M}_{ij} \leftrightarrow \mathcal{P}_{ij}$$

The partition functions must satisfy:

$$Z_{T[SU(N)]}(\vec{M}, \vec{T}, m_A) = Z_{T[SU(N)]}(\vec{T}, \vec{M}, -m_A)$$

Difference operators

The T[SU(N)] partition function is an eigenfunction of the trigonometric Ruijsenaars-Schneider (RS) Hamiltonians

[Gaiotto-Koroteev], [Bullimore-Kim-Koroteev]:

$$T_r(\vec{M}, m_a) Z_{T[SU(N)]}(\vec{M}, \vec{T}, m_A) = \chi_r(\vec{T}) Z_{T[SU(N)]}(\vec{M}, \vec{T}, m_A)$$

$$T_r(\vec{T}, -m_a) Z_{T[SU(N)]}(\vec{M}, \vec{T}, m_A) = \chi_r(\vec{M}) Z_{T[SU(N)]}(\vec{M}, \vec{T}, m_A),$$

with $r = 1, \dots, N$, implying the identity for mirror self-duality:

$$Z_{T[SU(N)]}(\vec{M}, \vec{T}, m_A) = Z_{T[SU(N)]}(\vec{T}, \vec{M}, -m_A).$$

Moreover since $T_r(\vec{M}, -m_a) = K[\vec{M}, m_A]^{-1}T_r(\vec{M}, m_a)K[\vec{M}, m_A]$, we get another identity:

$$Z_{T[SU(N)]}(\vec{M},\vec{T},m_{A}) = K[\vec{M},m_{A}]^{-1}K[\vec{T},m_{A}]Z_{T[SU(N)]}(\vec{M},\vec{T},-m_{A}),$$

where $K[\vec{M}, m_A]$ is the contribution of N^2 chirals in the SU(N) adjoint. This suggests that we have a new duality!

T[SU(N)] and its flip-flip dual FFT[SU(N)]

The electric theory is T[SU(N)], the magnetic theory is FFT[SU(N)], the same quiver theory where we flip the mesons $R[q_i \tilde{q}_j] = 2r' = 2 - 2r$ and the monopoles $R[m_{ij}] = 2 - 2r' = 2r$:

 $\mathcal{W}_{FFT[SU(N)]} = \mathcal{W}_{T[SU(N)]} + S_{ij}\mathbf{m}_{ij} + q_i\tilde{q}_jX_{ij}.$

Now the moduli space is parameterized by the flipping fields with:

$$R[X_{ij}] = 2r$$
, $R[S_{ij}] = 2 - 2r$.

and the operator map:

$$\mathcal{Q}_{ij} \leftrightarrow X_{ij}, \qquad \mathcal{M}_{ij} \leftrightarrow S_{ij}.$$

This is a generalized Aharony duality!

$T[SU(N)]^V$ and its flip-flip dual $FFT[SU(N)]^V$

Similarly on the mirror side we have a duality between $T[SU(N)]^V$ and $FFT[SU(N)]^V$, the same quiver theory where we *flip* the mesons $R[p_i\tilde{p}_j] = 2r'' = 2 - 2r' = 2r$ and the monopoles $R[n_{ij}] = 2 - 2r$, with:

$$\mathcal{W}_{FFT[SU(N)]^{V}} = \mathcal{W}_{T[SU(N)]} + n_{ij}R_{ij} + p_{i}\tilde{p}_{j}Y_{ij}.$$

Now the moduli space is parameterised by the flipping fields with:

$$R[Y_{ij}] = 2 - 2r$$
, $R[R_{ij}] = 2r$,

and the operator map is:

$$\mathcal{P}_{ij} o Y_{ij} , \qquad \qquad \mathcal{N}_{ij} o R_{ij} .$$

T[SU(N)] duality web

Deforming the T[SU(N)] duality web

The duality web can be deformed to generate new webs. We monopole deform T[SU(N)] and follow what happens in the various frames:

 $\mathcal{T}[SU(N)] \rightarrow \mathcal{T}_A$: sequential confinement

As in [Benvenuti-Giacomelli], [Giacomelli-Mekareeya] we sequentially confine T[SU(N)] by turning on

$$\delta \mathcal{W} = \mathcal{M}^{10\cdots 0} + \mathcal{M}^{01\cdots 0} + \cdots + \mathcal{M}^{0\cdots 10},$$

using at each node the duality [Benini-Benvenuti-SP]:

U(N), $N_f = N + 1$ with $\mathcal{W} = \mathcal{M}^+ \leftrightarrow WZ$ with $\mathcal{W} = \gamma \det M$.

Example in T[SU(3)] we turn on $\delta W = M^{10}$. Since the adjoint in the first node is decoupled we can apply the monopole duality:

After integrating out massive fields, we find at low energy

$$\mathcal{W} = \frac{\phi_2}{2} Tr[\mathcal{Q}] - \frac{\gamma_2}{2} Tr[\mathcal{Q}^2]$$

Notice that the adjoint is abelian.

$T[SU(N)] \rightarrow \mathcal{T}_A$: sequential confinement

Iterating this procedure we see that in the monopole deformed T[SU(N)] all the nodes but the last one are confined:

The final theory T_A has an abelian adjoint ϕ and N-2 singlets γ_m , with:

$$\mathcal{W}_{A} = \frac{1}{(N-1)!} \phi \operatorname{Tr}[\mathcal{Q}] - \sum_{m=2}^{N-1} \frac{\gamma_{m}}{m} \operatorname{Tr}[\mathcal{Q}^{m}].$$

$T[SU(N)]^V \rightarrow \mathcal{T}_B$: mass deformation

On the mirror side the monopole deformation is mapped to a complex mass deformation:

$$\delta \mathcal{W} = P_1 \tilde{P}_2 + P_2 \tilde{P}_3 + \dots + P_{N-2} \tilde{P}_{N-1}.$$

Only two flavors $(P_1, \tilde{P}_{N-1}) \equiv (d, \tilde{d})$ and $(P_N, \tilde{P}_N) \equiv (u, \tilde{u})$ remain light.

with

$$\mathcal{W}_B = d \left(\Phi_{N-1}
ight)^{N-1} \widetilde{d} + u \Phi_{N-1} \widetilde{u} + \mathcal{W}_{ extsf{tail}} \,.$$

$FFT[SU(N)]^V \rightarrow \mathcal{T}_C$: nilpotent vev & Higgsing

In $FFT[SU(N)]^V$ with $\mathcal{W}_{FFT[SU(N)]^V} = \mathcal{W}_{T[SU(N)]} + n_{ij}R_{ij} + p_i\tilde{p}_jY_{ij}$ the monopole deformation maps to

$$\delta \mathcal{W} = Y_{12} + Y_{23} + \dots + Y_{N-2,N}$$

The F-terms of the Y_{ij} singlets give a vev to the meson:

$$\langle p_i \tilde{p}_j \rangle = \langle \operatorname{Tr}_{N-1} \mathbb{P}^{(N-1,N)} \rangle = \mathbb{J}_{N-1} \oplus \mathbb{J}_1$$

The F-terms of the adjoints Φ_k , $k = N, \dots 2$ then propagate the vev:

$$\mathrm{Tr}_{k-1}\mathbb{P}^{(k-1,k)} = \mathrm{Tr}_{k+1}\mathbb{P}^{(k,k+1)},$$

which can be solved for nilpotent vevs for the bifundamental fields. Finally the F-terms for bifundamentals and D-terms give:

$$\langle \Phi_k \rangle = \mathbb{J}_1 \oplus \mathbb{J}_{k-1}.$$

$FFT[SU(N)]^V \rightarrow \mathcal{T}_C$: nilpotent vev & Higgsing

All these vevs determine a super-Higgs mechanism as in $_{\rm [Agarwal-Bah-Maruyoshi-Song]}$ which has the effect of abelianising all the nodes.

A careful analysis of the mass matrix allow us to find the remaining light fields in the low energy theory, the abelian quiver T_C :

Alternative path: $\mathcal{T}_A \rightarrow \mathcal{T}_D \rightarrow \mathcal{T}_C$

Starting from \mathcal{T}_A , the U(N-1) with N flavors with

$$\mathcal{W}_{A} = \frac{1}{(N-1)!} \phi \operatorname{Tr}[\mathcal{Q}] - \sum_{m=2}^{N-1} \frac{\gamma_{m}}{m} \operatorname{Tr}[\mathcal{Q}^{m}],$$

we take the Aharony dual (and map the superpotential) and obtain T_D : U(1) with N flavor and

$$\mathcal{W}_D = \mathcal{M}^{\pm} S_{\pm} + Q_i \tilde{Q}_j \hat{Z}_{ij} + \sum_{m=2}^N \frac{\Gamma_m}{m} \operatorname{Tr}[\hat{Z}_{ij}^m].$$

Now we take the mirror (and map the superpotential), after some rearrangement we obtain the abelian quiver theory T_C with

$$\mathcal{W}_{C} = \Psi_{1}(b_{1}\tilde{b}_{1} - b_{2}\tilde{b}_{2}) + \dots + \Psi_{N-1}(b_{N-1}\tilde{b}_{N-1} - b_{N}\tilde{b}_{N}) + \sum_{i} b_{i}\tilde{b}_{i} + \prod_{i}\tilde{b}_{i}\Sigma_{+} + \prod_{i} b_{i}\Sigma_{-} + \mathcal{M}_{ij}\hat{Z}_{ij} + \sum_{m=2}^{N-1}\frac{\Gamma_{m}}{m}Tr[\hat{Z}_{ij}^{m}],$$

consistent with what we got via the nilpotent Higgsing of $FFT[SU(N)]^{V}$!

Deformed T[SU(N)] duality web

 \rightarrow More general deformations will lead to new duality webs.

Spectral duality $FT[SU(N)] \leftrightarrow FT[SU(N)]^V$

Starting from the dual pair on the diagonal of the undeformed web we *Flip* on both sides, (since $Flip^2 = 1$) we find a new *spectral* self-dual pair:

Spectral duality $FT[SU(N)] \leftrightarrow FT[SU(N)]^V$

Operators map:

- ▶ Electric side: FT[SU(N)], with $R[Q_{ij}] = 2r$ we have the monopoles $R[M_{ij}] = 2 2r$ and the singlets $R[X_{ij}] = 2 2r$.
- ▶ Magnetic side: FT[SU(N)]^V, with R[P_{ij}] = 2r' = 2r we have the monopoles R[N_{ij}] = 2 2r and the singlets R[T_{ij}] = 2 2r.

$$X_{ij} \leftrightarrow \mathcal{N}_{ij}, \qquad \qquad \mathcal{M}_{ij} \leftrightarrow \mathcal{T}_{ij}$$

Using the difference operators it easy to check that:

$$Z_{FT[SU(N)]}(\vec{M},\vec{T},m_A) = Z_{FT[SU(N)]}(\vec{T},\vec{M},m_A)$$

where

$$Z_{FT[SU(N)]}(\vec{M}, \vec{T}, m_A) = K[\vec{M}, m_A] Z_{T[SU(N)]}(\vec{M}, \vec{T}, m_A).$$

Brane set-ups

NS5 and D5' branes can form a pq-web engineering a 5d $\mathcal{N} = 1$ theory. We are going to interprete FT[SU(N)] as a codimension-two defect theory and show that spectral duality follows from 5d fiber base duality. In the following it will be useful to work with $D_2 \times S^1$ partition functions, the holomorphic blocks. So I will quickly introduce them for T[SU(N)].

T[SU(N)] holomorphic block integral

We consider the $D_2 \times S^1$ partition function, or holomorphic block with $q = e^{\hbar}$, $\hbar = R\epsilon$:

$$\mathcal{B}_{T[SU(N)]}^{D_2 imes S^1}(ec{\mu}, ec{ au}, t) = \int \prod_{a=1}^{N-1} \prod_{i=1}^{a} rac{dx_i^{(a)}}{x_i^{(a)}} Z_{ ext{cl}}(ec{ au}) \ Z_{1loop}(ec{\mu})$$

where $Z_{\rm cl}$ contains all mixed Chern-Simons couplings and

$$Z_{1loop} = \prod_{a=1}^{N-1} \frac{\prod\limits_{i\neq j}^{a} {\binom{x_{i}^{(a)}}{x_{i}^{(a)}}; q}_{\infty}}{\prod\limits_{i,j=1}^{a} {\left(t\frac{x_{j}^{(a)}}{x_{i}^{(a)}}; q \right)_{\infty}}} \prod_{a=1}^{N-2} \prod_{i=1}^{a} \prod_{j=1}^{a+1} \frac{\left(t\frac{x_{j}^{(a+1)}}{x_{i}^{(a)}}; q \right)_{\infty}}{\left(\frac{x_{j}^{(a+1)}}{x_{i}^{(a)}}; q \right)_{\infty}} \prod_{p=1}^{N} \prod_{i=1}^{N-1} \frac{\left(t\frac{\mu_{p}}{x_{i}^{(N-1)}}; q \right)_{\infty}}{\left(\frac{\mu_{p}}{x_{i}^{(N-1)}}; q \right)_{\infty}} ,$$

where $(x; q)_{\infty} = \prod_{k=0}^{\infty} (1 - xq^k)$ and $\mu_p = e^{RM_p}$, $\tau_p = e^{RT_p}$, $t = e^{Rm_A}$.

The integral is evaluated on a basis of contours Γ_{α} , $\alpha = 1, \cdots, N!$ in one to one correspondence with the SUSY vacua.

The integration over the reference contour Γ_{α_0} yields

$$\mathcal{B}_{T[SU(N)]}^{D_2 \times S^1,\,(\alpha_0)} = Z_{\mathrm{cl}}^{3d,\,(\alpha_0)} Z_{1loop}^{3d,\,(\alpha_0)} Z_{\mathrm{vort}}^{3d,\,(\alpha_0)},$$

with

$$Z_{\text{vort}}^{3d,(\alpha_{0})}(\vec{\mu},\vec{\tau},\boldsymbol{q},t) = \\ = \sum_{\{k_{i}^{(a)}\}} \prod_{a=1}^{N-1} \left[\left(t \frac{\tau_{a}}{\tau_{a+1}} \right)^{\sum_{i=1}^{a} k_{i}^{(a)}} \prod_{i \neq j}^{a} \frac{\left(t \frac{\mu_{i}}{\mu_{j}}; \boldsymbol{q} \right)_{k_{i}^{(a)} - k_{j}^{(a)}}}{\left(\frac{\mu_{i}}{\mu_{j}}; \boldsymbol{q} \right)_{k_{i}^{(a)} - k_{j}^{(a)}}} \prod_{i=1}^{a} \prod_{j=1}^{a+1} \frac{\left(\frac{q}{t} \frac{\mu_{i}}{\mu_{j}}; \boldsymbol{q} \right)_{k_{i}^{(a)} - k_{j}^{(a+1)}}}{\left(q \frac{\mu_{i}}{\mu_{j}}; \boldsymbol{q} \right)_{k_{i}^{(a)} - k_{j}^{(a+1)}}} \right]$$

the sum is over sets of integers $k_i^{(a)}$ satisfying the inequalities

Duality identities for the blocks:

mirror:
$$\mathcal{B}_{T[SU(N)]}^{D_2 \times S^1}(\vec{\mu}, \vec{\tau}, t) = \mathcal{B}_{T[SU(N)]}^{D_2 \times S^1}(\vec{\tau}, \vec{\mu}, \frac{q}{t}),$$

spectral: $\mathcal{B}_{FT[SU(N)]}^{D_2 \times S^1}(\vec{\mu}, \vec{\tau}, t) = \mathcal{B}_{FT[SU(N)]}^{D_2 \times S^1}(\vec{\tau}, \vec{\mu}, t).$

3d FT[SU(N)] and its dual from 5d

FT[SU(N)] lives on D3 branes suspended between N NS5s and N D5's. These branes form the pq-web engineering the 5d $\mathcal{N} = 1$ quiver theory $N + SU(N)^{N-1} + N$.

We want to view FT[SU(N)] as a codimension-two defect in this theory:

- ► Higgsing: the FT[U(N)] partition function is obtained by tuning the parameters of the 5d square quiver partition function.
- Brane realisation: the codimension-two defect theory is the vortex string theory on the Higgs branch of the 5d theory.
- Geometric engineering: Higgsing corresponds to geometric transition happening at quantised values of the Kähler parameters.
- ► 3d spectral duality descends from fiber-base or IIB S-duality

Higgsing the 5d square quiver

The instanton partition function $Z_{inst}^{5d}[U(N)^{N-1}]$ is a sum over N-tuple of Young diagrams, $\vec{Y}^{(a)} = \{Y_1^{(a)}, \dots, Y_N^{(a)}\}$, $a = 1, \dots, (N-1)$.

When the Coulomb branch parameters are tuned to special values, the Young diagrams for some nodes truncate to diagrams with finitely many columns yielding the partition function of a coupled system:

$$Z^{5d}[U(N)^{N-1}] \xrightarrow[Higgsing]{} Z^{5d-3d}$$

For maximal Higgsing the 5d bulk theory is trivial and we just get the vortex partition function of the 3d theory.

FT[SU(N)] via Higgsing

By maximally Higgsing the 5d square quiver by tuning masses and Coulomb parameters as:

we obtain FT[SU(N)]:

 $Z^{5d}[U(N)^{N-1}] \to \mathcal{B}_{FT[SU(N)]}^{D_2 \times S^1, (\alpha_0)}.$

Higgsing and branes

The 5d square quiver can be realised as the low energy description of a web of N NS5 and N D5' branes.

IIB BRANE SETUP

On the Higgs branch the NS5 branes can be removed from the web and D3 stretched in between. The 3*d* low energy theory on the D3s is our vortex theory [Hanany-Tong],[Dorey-Lee-Hollowood].

Higgsing and geometric transition

We can engineer the 5d quiver theory from M theory on $X \times \mathbb{R}^4_{q,t} \times S^1$.

The Higgsing conditions translate into quantisation condition for Kählers parameters $Q = \sqrt{\frac{q}{t}} t^N$ for which there is geometric transition:

GEOMETRIC ENGINEERING ON TORIC CY X

Using the refined topological vertex we can calculate the partition function of the Higgsed CY \hat{X} and check that:

$$Z^{\hat{X}}_{ ext{top}}(ec{\mu},ec{ au},q,t)=\mathcal{B}^{D_2 imes S^1,\,(lpha_0)}_{FT[SU(N)]}(ec{\mu},ec{ au},q,t)$$

 $\vec{\mu}, \vec{\tau}$ are identified with fiber and base Kähler parameters.

3d duality from fiber-base duality

The CYs X, \hat{X} (before and after Higgsing) are invariant under the action fiber-base duality which swaps μ_i with τ_i and so

Notice that t is an Ω -background parameter not affected by the map.

 \rightarrow 3d self-duality for FT[SU(N)] descends from fiber-base duality!

We can generate large families of new 3d dualities from fiber-base via Higgsing.

More spectral duals

Starting from the duality $\mathcal{T}_D \leftrightarrow \mathcal{T}_B$ we can obtain another spectral pair:

Viewing these theories as codimension-two defects also this spectral duality descends from 5d fiber base duality!

Gauge/q-CFT

HB of 3d $\mathcal{N} = 2$ theories can be directly mapped to correlators of q-Toda vertex operators in the free boson Dotsenko-Fateev (DF) representation [Aganagic-Houzi-Shakirov].

For FT[SU(N)] we have the following duality web (see Anton's talk)

 Horizontal arrows indicate (IR) dualities, requires highly non-trivial integral identities.

 Vertical arrows indicate AGT-like correspondenes. Trivial mapping, only need to establish a dictionary.

3d/q-CFT web via Higgsing

We saw that the FT[SU(N)] spectral dual pair can be derived via Higgsing from 5d.

Similarly the $q DF_{N+2}^{A_{N-1}}$ blocks can be obtained by tuning external and internal momenta in $\langle V_1 \cdots V_{N+2} \rangle_{q-A_{N-1}}$:

Now we focus again on our 3d/q-CFT web

what happen when we take the $3d \rightarrow 2d$ or $q \rightarrow 1$? See Anton's talk!

THANK YOU!

BACK-UP SLIDES

super-potentials

$$\begin{split} \mathcal{W}_{\mathcal{T}} &= \hat{X}_{ij} q_i \tilde{q}_j \\ \mathcal{W}_{\mathcal{T}'} &= (-)^N \left[d \underbrace{\Phi_N \cdots \Phi_N}_{N \text{ times}} \tilde{d} \right] &+ u \Phi_N \tilde{u} + \mathcal{W}_{TSU(N)} + \\ &+ S_+ u \tilde{d} + S_- d \tilde{u} + \sum_{m=2}^{N-1} \frac{\gamma_m}{m} \operatorname{Tr}[d\phi^m \tilde{d}] \,. \end{split}$$

singlets S_{\pm} and $N-2 \gamma_m$ and $Tr \mathcal{M}_{ij}$ are the motions $(2 \cdot 1 + 1 \cdot (N-1))$ in the brane set up.

RS Hamiltonians

Hamiltonians:

$$T_r(\vec{M}) = \sum_{\mathcal{I}, |\mathcal{I}|=r} \prod_{i \in \mathcal{I}, j \neq \mathcal{I}} rac{\sinh \pi b (m_A - M_i - M_j)}{\sin \pi (M_i - M_j)} \prod_{j \in \mathcal{I}} e^{ib\partial_{M_j}} .$$

Eigenvalues:

$$\chi_r(\vec{T}) = \sum_{i_1 < \cdots i_r} e^{2\pi b(T_{i_1} + \cdots T_{i_r})}.$$

Toda blocks

The A_n Toda theory describes 2d bosons $\vec{\phi}$ with $\sum_{a} e^{\sqrt{\beta}(\vec{\phi}, \vec{e}_{(a)})}$ interaction.

Correlators of primary vertex operators $V_{\alpha} = e^{\frac{(\vec{\phi},\vec{\alpha})}{\sqrt{\beta}}}$ can be obtained in terms of free bosons correlators with insertion of N_a screening charges in each sector:

$$\langle \vec{\alpha}^{(\infty)} | V_{\vec{\alpha}^{(1)}}(z_1) \dots V_{\vec{\alpha}^{(l)}}(z_l) \prod_{a=1}^n Q_{(a)}^{N_a} | \vec{\alpha}^{(0)} \rangle_{\text{free}},$$

where

$$Q_{(a)} = \oint dx \, S_{(a)}(x) \,, \qquad S_{(a)} = e^{\sqrt{\beta}(\vec{\phi}, \vec{e}_{(a)})} \,.$$

External and internal momenta must satisfy certain *quantization* conditions.

Dotsenko-Fateev integrals

After expanding in modes the free bosons

$$\phi^{(a)}(z) = Q^{(a)} + P^{(a)} \log z + \sum_{k \neq 0} c_k^{(a)} \frac{z^{-k}}{k}$$

with $[c_k^{(a)}, c_m^{(b)}] = k \delta_{k+m,0} \, \delta a, b$ and normal ordering, the correlators reduce to Dotsenko-Fateev integrals:

$$DF_{l+2}^{A_n} \sim \oint \prod_{a=1}^n \prod_{i=1}^{N_a} dx_i^{(a)} \prod_{a=1}^n \prod_{i=1}^{N_a} \left(x_i^{(a)}\right)^{\beta(N_a - N_{a+1} - 1) + (\alpha_a^{(0)} - \alpha_{a+1}^{(0)})} \times \\ \prod_{a=1}^n \prod_{i \neq j}^{N_a} \left(1 - \frac{x_j^{(a)}}{x_i^{(a)}}\right)^{\beta} \prod_{a=1}^{n-1} \prod_{i=1}^{N_a} \prod_{j=1}^{N_{a+1}} \left(1 - \frac{x_j^{(a+1)}}{x_i^{(a)}}\right)^{-\beta} \prod_{\rho=1}^l \prod_{a=1}^n \prod_{i=1}^{N_a} \left(1 - \frac{x_i^{(a)}}{z_\rho}\right)^{\alpha_a^{(\rho)} - \alpha_{a+1}^{(\rho)}}$$

In the Virasoro (A_1) case these integrals can be calculated. In the higher rank case integrals can be evaluated only for special values of the momenta.

q-deformed \mathcal{W}_N algebras

Independently introduced by various groups in the 90s.

[Shiraishi-Kubo-Awata-Odake],[Lukyanov-Pugai],[Frenkel-Reshetikhin],[Jimbo-Miwa]. The $\mathcal{V}ir_{q,t}$ has generators \mathcal{T}_n with $n \in \mathbb{Z}$, satisfying

$$[T_n, T_m] = -\sum_{l=1}^{+\infty} f_l \left(T_{n-l} T_{m+l} - T_{m-l} T_{n+l} \right) - \frac{(1-q)(1-t^{-1})(p^n - p^{-n})}{1-p} \delta_{m+n,0}$$

where $p = \frac{q}{t}$ and the functions f_l are determined by the expansion

$$f(z) = \sum_{l=0}^{+\infty} f_l z^l = \exp\left[\sum_{l=1}^{+\infty} \frac{1}{n} \frac{(1-q^n)(1-t^{-n})}{1+p^n} z^n\right] = \frac{\left(qz; \frac{q^2}{t^2}\right)_{\infty} \left(t^{-1} z\frac{q^2}{t^2}\right)_{\infty}}{(1-z)\left(\frac{q^2}{t} z\frac{q^2}{t^2}\right)_{\infty} \left(\frac{q}{t^2} z; \frac{q^2}{t^2}\right)_{\infty}} dz^{-1}$$

The current $T(z) = \sum_{n} T_{n} z^{-n}$ satisfies

$$f\left(\frac{w}{z}\right)T(z)T(w)-f\left(\frac{z}{w}\right)T(w)T(z)=-\frac{(1-q)(1-t^{-1})}{1-\frac{q}{t}}\left(\delta\left(\frac{q}{t}\frac{w}{z}\right)-\delta\left(\frac{t}{q}\frac{w}{z}\right)\right)$$

For $t=q^{eta},\,q=e^{\hbar}
ightarrow1$ (eta,z fixed) we recover the Virasoro current L(z):

$$T(z) = 2 + \beta \hbar^2 \left(z^2 L(z) + \frac{1}{4} \left(\sqrt{\beta} - \frac{1}{\sqrt{\beta}} \right)^2 \right) + \dots$$

q-Toda blocks

The *q*-deformation can be directly implemented on the free boson correlators and yields a *q*-deformed version of the Coulomb integrals:

$$q \mathrm{DF}_{l+2}^{A_n} \sim \oint \prod_{a=1}^n \prod_{i=1}^{N_a} dx_i^{(a)} \prod_{a=1}^n \prod_{i=1}^{N_a} \left(x_i^{(a)} \right)^{\beta(N_a - N_{a+1} - 1) + \left(\alpha_a^{(0)} - \alpha_{a+1}^{(0)} \right) + \sum_{p=1}^l \left(\alpha_a^{(p)} - \alpha_{a+1}^{(p)} \right)} \times \\ \times \prod_{a=1}^n \prod_{i \neq j}^{N_a} \frac{\left(\frac{x_j^{(a)}}{x_i^{(a)}}; q \right)_{\infty}}{\left(t \frac{x_j^{(a)}}{x_i^{(a)}}; q \right)_{\infty}} \prod_{a=1}^{n-1} \prod_{i=1}^N \prod_{j=1}^N \frac{\left(u \frac{x_j^{(a+1)}}{x_i^{(a)}}; q \right)_{\infty}}{\left(v \frac{x_j^{(a+1)}}{x_i^{(a)}}; q \right)_{\infty}} \prod_{p=1}^l \prod_{a=1}^n \prod_{i=1}^N \frac{\left(q^{1 - \alpha_a^{(p)}} v^a \frac{z_p}{x_i^{(a)}}; q \right)_{\infty}}{\left(q^{1 - \alpha_{a+1}^{(p)}} v^a \frac{z_p}{x_i^{(a)}}; q \right)_{\infty}},$$

where $u = \sqrt{qt}$ and $v = \sqrt{\frac{q}{t}}$.

This is exactly the $D^2 \times S^1$ partition function of a quiver theory! [Aganagic-Houzi-Shakirov]

FT[SU(N)] block as a q-Toda block

The FT[SU(N)] holomorphic block maps to an N + 2-point A_{N-1} block

$$\mathcal{B}_{FT[U(N)]}^{D_2 imes S^1} = q \mathrm{DF}_{N+2}^{\mathcal{A}_{N-1}},$$

with two generic primaries and N-2 are degenerates vertex operators $\vec{\alpha}^{(p)} = \beta \vec{\omega}_{N-1}$ for $p = 1, \dots N - 1$.

The dictionary is as follows:

$\mathcal{B}_{FT[U(N)]}^{D_2 \times S^1}$	$q \mathrm{DF}_{N+2}^{\mathcal{A}_{N-1}}$
Parameter $q=e^{\hbar}=q^{R\epsilon}$	Deformation parameter
Axial mass $m_A = t = q^eta$	Central charge parameter eta
Masses μ_p	Positions of the vertex operators z_p
FI parameters τ_a	Momentum vector $ec{lpha}^{(0)}_{s}$
Screening charges $N_a = a$	Ranks of the gauge groups

The spectral dual theory is mapped to the spectral dual *q*-block:

$$\mathcal{B}_{\breve{FT}[SU(N)]}^{D_2 \times S^1} = q\breve{\mathrm{DF}}_{N+2}^{A_{N-1}}.$$

Spectral duality on *q*-blocks exchanges insertions points with momenta.

$3d \rightarrow 2d$ reduction of the FT[SU(N)] spectral dual pair

Recent thorough discussion in [Aharony-Razamat-Willett]:

- ► 2d limits depend on how the 3d real masses scale with R. We can obtain theories with 2d gauge theory or Landau-Ginsburg UV completion
- we can end up with direct sums of 2d theories
- earlier result: 3d abelian mirror pairs reduce to 2d Hori-Vafa dual pairs [Aganagic-Hori-Karch-Tong].
- we turn on all possible mass deformations so the 2d theories have isolated vacua (removing mass deformations is subtle if there are non-compact branches)

FT[SU(N)] reduction

The *natural* Higgs limit reduces the 3d FT[SU(N)] theory to the same theory in 2d. The 3d FI parameters scale as 1/R and lift the Coulomb branch while the matter fields remain light.

In our conventions $q=e^{\hbar}
ightarrow 1$ $(\hbar=R\epsilon)$ and

$$au_{a} = e^{RT_{a}} = ext{fixed}, \quad \mu_{j} = e^{RM_{j}} = q^{f_{j}}, \quad m_{A} = t = q^{eta}.$$

The vacua remain at finite distances $x_i^{(a)} = e^{\hbar w_i^{(a)}} = q^{w_i^{(a)}}$.

Using

$$\lim_{q\to 1} \frac{(q^x;q)_\infty}{(q^y;q)_\infty} = (-\hbar)^{y-x} \frac{\Gamma(y)}{\Gamma(x)},$$

the 1loop contributions of chiral and vector multiplets reduce to the D_2 contributions, the classical part also reduce and we find:

$$\lim_{q \to 1} \mathcal{B}_{FT[SU(N)]}^{D_2 \times S^1}(\vec{\tau}, \vec{\mu}, t) = \mathcal{B}_{FT[SU(N)]}^{D_2}(\vec{\tau}, \vec{f}, \beta) \,.$$

Dual FT[SU(N)] reduction

On the dual side the Higgs limit becomes an *un-natural* Coulomb limit. The vacua are at infinity so the 3*d* Coulomb brach parameters $x_i^{(a)}$ stay finite as $\hbar \to 0$.

Using

$$\lim_{q\to 1} \frac{(q^a x;q)_\infty}{(q^b x;q)_\infty} = (1-x)^{b-a},$$

we immediately see that the dual block becomes a Selberg-like integral which can be immediately identified with a Toda DF block:

$$\lim_{q\to 1}\check{\mathcal{B}}_{FT[SU(N)]}^{D_2\times S^1}(\vec{\tau},\vec{\mu},t)=\check{DF}_{N+2}^{A_{N-1}}.$$

Gauge/CFT follows from 3d spectral duality!

Reduction of the 3d/q-CFT web

- B^{D2}_{LG} is the D² partition function of a theory of twisted chiral multiplets with a twisted superpotential.
- ► $dDF_{N+2}^{A_{N-1}}$ is a correlator of vertex operators with d- W_N symmetry, an *un-natural* limit of q- W_N
- The red link is the familiar gauge/CFT correspondence connecting surface operators vortex partition functions to Toda degenerate correlators.

d-Virasoro

Starting from the *q*-Virasoro relation:

$$f\left(\frac{w}{z}\right)T(z)T(w)-f\left(\frac{z}{w}\right)T(w)T(z) = -\frac{(1-q)(1-t^{-1})}{1-\frac{q}{t}}\left(\delta\left(\frac{q}{t}\frac{w}{z}\right)-\delta\left(\frac{t}{q}\frac{w}{z}\right)\right)$$

We can also take an *un-natural* limit where $z = q^u$, $w = q^v$ and finite $t(u) = \lim_{q \to 1} T(q^u)$ to obtain the *d*-Virasoro algebra:

$$g(v-u)t(u)t(v)-g(u-v)t(v)t(u) = \frac{\beta}{\beta-1}\left(\delta(v-u+1-\beta)-\delta(v-u-1+\beta)\right)$$

with

$$g(u) = \frac{2(1-\beta)}{u} \frac{\Gamma\left(\frac{u+2-\beta}{2(1-\beta)}\right) \Gamma\left(\frac{u+1-2\beta}{2(1-\beta)}\right)}{\Gamma\left(\frac{u+1}{2(1-\beta)}\right) \Gamma\left(\frac{u-\beta}{2(1-\beta)}\right)}.$$

We can find a bosonization of this algebra: find screening current and vertex operators and calculate their normal ordered correlators $dDF_{N+2}^{A_{N-1}}$.