## 4d $\mathcal{N}=3$ indices via discrete gauging

based on T. Bourton, AP and E. Pomoni arXiv:1804.05396 [hep-th]

## Alessandro Pini

17 July, 2018


## Introduction and motivations

- We did not know that $4 d \mathcal{N}=3$ QFTs exist until very recently !!!
[I.García-Etxebarria and D.Regalado (2015)]
- By $\mathcal{N}=3$ SCA alone !! $\Rightarrow$ Main properties: [0.Aharony and M . Evtikhiev (2015)]
* Have no marginal couplings $\Rightarrow$ are isolated fixed points.
* They do not have a Lagrangian description.
* The only flavour symmetry is an R-symmetry.
* The conformal central charges $(a, c)$ must be equal.


## Introduction and motivations

- We did not know that $4 d \mathcal{N}=3$ QFTs exist until very recently !!!
[I.García-Etxebarria and D.Regalado (2015)]
- By $\mathcal{N}=3$ SCA alone !! $\Rightarrow$ Main properties: [0.Aharony and M . Evtikhiev (2015)]
* Have no marginal couplings $\Rightarrow$ are isolated fixed points.
* They do not have a Lagrangian description.
* The only flavour symmetry is an R-symmetry.
* The conformal central charges $(a, c)$ must be equal.


## Which tools we can use ?

## Introduction and motivations

- We did not know that $4 d \mathcal{N}=3$ QFTs exist until very recently !!!
[I.García-Etxebarria and D.Regalado (2015)]
- By $\mathcal{N}=3$ SCA alone !! $\Rightarrow$ Main properties: [0.Aharony and M . Evtikhiev (2015)]
* Have no marginal couplings $\Rightarrow$ are isolated fixed points.
* They do not have a Lagrangian description.
* The only flavour symmetry is an R-symmetry.
* The conformal central charges $(a, c)$ must be equal.


## Which tools we can use ?

- F-theory and M-theory construction. [I.García-Etxebarria and D.Regalado (2015)]
- Gravity dual description $\Rightarrow$ large $N$ limit. [I.García-Extebarria and D.Regalado (2015)],[O.Aharony and Y.Tachikawa (2016)],[Y.Imamura and S.Yokoyama (2016)]
- Superconformal bootstrap and chiral algebra techniques. [T.Nishinaka and Y.Tachikawa. (2016)],[M.Lemos, P.Liendo et al. (2016)]

Introduction and motivations

## Extra tool: Superconformal Index (SCI)



## Prescription:

## Discrete gauging of $4 d \mathcal{N}=4 \mathrm{SCI} \Rightarrow 4 d \mathcal{N}=3 \mathrm{SCl}$

## Contents of the talk

(1) Constructing $4 \mathrm{~d} \mathcal{N}=3$ theories
(2) The discrete gauging prescription
(3) Results

4 Summary and conclusions

## Contents of the talk

(1) Constructing $4 \mathrm{~d} \mathcal{N}=3$ theories

## (2) The discrete gauging prescription

## 3 Results

## 4 Summary and conclusions

## Construction via S-folds

F-theory on $\mathbb{R}^{1,3} \times\left(\mathbb{R}^{6} \times T^{2}\right) / \mathbb{Z}_{k}$,
$\mathbb{Z}_{k} \subset S O(6)_{R} \times S L(2, \mathbb{Z})$.

$$
e^{\frac{2 \pi i}{k}\left(r_{k}+s_{k}\right)} \in \mathbb{Z}_{k}
$$

- $S O(6)_{R} r_{k}$ acts on $\mathbb{R}^{6}$
- $S L(2, \mathbb{Z}) s_{k}$ acts on $T^{2} \quad z=x+\tau y$
- For $k=1,2 \Rightarrow \mathcal{N}=4$ SYM $\quad(k=2 \rightarrow$ orientifolds $)$.
- For $k=3,4,6 \Rightarrow$ fixed complex structure $\tau=e^{i \pi / 3}, i, e^{i \pi / 3}$.

$$
\mathcal{N}=3 \text { strongly coupled SCFT }
$$

## $4 \mathrm{~d} \mathcal{N}=3$ theories via discrete gauging

[O.Aharony and Y.Tachikawa (2016)], [P.C.Argyres and M.Martone (2018)]
Mother theory: $\mathcal{N}=4$ SYM in $4 d(G, \tau) . \quad \mathfrak{g}=\operatorname{Lie}(G)=A, D, E$ or $\mathfrak{u}(N)$.
We focus on local operators $\Rightarrow S L(2, \mathbb{Z})$ is the self duality group.

The global symmetry group is at least: $\operatorname{PSU}(2,2 \mid 4)$

$$
\text { If } \tau=\left\{\text { any, } e^{i \pi / 3}, i, e^{i \pi / 3}\right\} \Rightarrow \mathbb{Z}_{n} \text { enhancement } n=2,3,4,6
$$

$$
\mathbb{Z}_{n} \downarrow \text { gauging }
$$

Daughter theory: $\mathcal{N}=4, n=2$ or $\mathcal{N}=3, n=3,4,6$

## $4 d \mathcal{N}=3$ as $\mathcal{N}=2$ QFTs

$$
U(3)_{R} \mapsto S U(2)_{R} \times U(1)_{r} \times U(1)_{f}
$$

$$
(X, Y, Z) \in V_{\mathcal{N}=4}
$$

Coulomb branch CB $(Y=Z=0)$

$$
\begin{gathered}
X \mapsto u_{j}: \quad 1 \leq j \leq N=\operatorname{rank}[\mathfrak{g}], \quad E\left(u_{j}\right)=r\left(u_{j}\right), \\
\mathbb{Z}_{n}: u_{j} \mapsto e^{\frac{2 \pi i}{n} E\left(u_{j}\right)} u_{j}
\end{gathered}
$$

Higgs branch HB $(X=0)$

$$
\begin{gathered}
(Y, Z) \mapsto W^{(f)}: \quad E\left(W^{(f)}\right)=2 R\left(W^{(f)}\right) \quad f \in U(1)_{f} \\
\mathbb{Z}_{n}: W^{(f)} \mapsto e^{\frac{2 \pi i}{n} f} W^{(f)}
\end{gathered}
$$

## Contents of the talk

(1) Constructing $4 \mathrm{~d} \mathcal{N}=3$ theories
(2) The discrete gauging prescription

## (3) Results

## 4 Summary and conclusions

## Computation of the $\mathcal{N}=4$ mother theory SCl

[C. Romelsberger (2005)], [J.Kinney, J.M.Maldacena, S.Minwalla and S.Raju (2005)]

$$
\mathcal{I}\left(\mu_{i}\right)=\operatorname{Tr}_{\mathbb{S}^{3}}\left[(-1)^{F} e^{\mu_{i} J_{i}}\right], \quad\left[J_{i}, \mathcal{Q}\right]=0 \quad \delta=\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}=0
$$

## Computation in the free theory

$$
\frac{\partial}{\partial \tau} \mathcal{I}\left(\mu_{i}\right)=0 \quad \int d \mu_{G} \mathrm{PE}[\underbrace{i(\ldots))}_{\text {Single letter index }} \chi_{a d j}^{G}]
$$

## The index gauging prescription

At $\tau=\left\{\right.$ any, $\left.e^{\pi i / 3}, i, e^{\pi i / 3}\right\} \Rightarrow \mathbb{Z}_{n}$ enhancement $\Rightarrow$ extra fugacity $\epsilon$

$$
\mathcal{I}_{\mathcal{M}_{\mathcal{N}=4}}\left(\mu_{i}, \epsilon\right)=\sum_{\mathcal{M}_{\mathcal{N}=4 \epsilon \text { shorts }}} \mathcal{I}_{\mathcal{M}_{\mathcal{N}=4}}\left(\mu_{i}\right) \epsilon^{r_{n}+s_{n}}
$$

We gauge the $\sqrt{ } \mathbb{Z}_{n}$ symmetry

$$
\mathcal{I}_{\mathbb{Z}_{n}}\left(\mu_{i}\right):=\frac{1}{\left|\mathbb{Z}_{n}\right|} \sum_{\epsilon \in \mathbb{Z}_{n}} \mathcal{I}_{\mathcal{M}_{\mathcal{N}=4}}\left(\mu_{i}, \epsilon\right) \quad \Rightarrow r_{n}+s_{n}=0 \bmod n
$$

## Projection to $\mathbb{Z}_{n}$ gauge invariant operators

## Two particular cases

## In these two cases there is not recombination !!!

[A.Gadde, L.Rastelli, S.S.Razamat and W.Yan (2011)]
The Coulomb branch limit: $X \quad(Y, Z=0)$

$$
\begin{aligned}
& i_{\mathrm{CB}}(x)=x, \quad\left(r_{n}+s_{n}\right)(X)=r \Rightarrow x \mapsto \epsilon X \\
& \mathcal{I}_{\mathbb{Z}_{n}, \mathrm{CB}}(x)=\frac{1}{\left|\mathbb{Z}_{n}\right|} \sum_{\epsilon \in \mathbb{Z}_{n}} \int d \mu_{G} \mathrm{PE}\left[i_{\mathrm{CB}}(x \epsilon) \chi_{a d j}^{G}\right]
\end{aligned}
$$

Higgs branch Hilbert series: $(Y, Z), \quad(X=0)$

$$
\begin{gathered}
\operatorname{HS}(\mathfrak{t}, y, \epsilon):=\operatorname{Tr}_{\mathcal{H}}\left[\mathfrak{t}^{2 R} y^{f} \epsilon^{r_{n}+s_{n}}\right], \quad\left(r_{n}+s_{n}\right)(Y, Z)=f \Rightarrow y \mapsto \epsilon y \\
\operatorname{HS}_{\mathbb{Z}_{n}}(\mathfrak{t}, y)=\frac{1}{\left|\mathbb{Z}_{n}\right|} \sum_{\epsilon \in \mathbb{Z}_{n}} \int d \mu_{G} \mathcal{F}(\mathfrak{t}, \epsilon y)
\end{gathered}
$$

## Contents of the talk

(1) Constructing $4 \mathrm{~d} \mathcal{N}=3$ theories
(2) The discrete gauging prescription
(3) Results

## 4 Summary and conclusions

Rank-1 theories: $G=U(1)$

## Coulomb branch

$$
\begin{array}{cc}
\mathcal{I}_{\mathbb{Z}_{n}, \mathrm{CB}}^{\mathfrak{u}(1)}(x)=\mathrm{PE}\left[x^{n}\right], & \mathrm{CB}_{\mathfrak{u}(1), n} \cong \mathbb{C} \\
u=X \mapsto \widetilde{u}=u^{n}, &
\end{array}
$$

agrees with [O.Aharony and Y.Tachikawa (2015)], [P.C.Argyres and M.Martone (2016)]

## Higgs branch

$$
\begin{array}{cc}
\mathrm{HS}_{\mathbb{Z}_{n}}^{\mathfrak{u}(1)}(\mathfrak{t}, y)= & \mathrm{PE}\left[\mathfrak{t}^{2}+\left(y^{n}+y^{-n}\right) \mathfrak{t}^{n}-\mathfrak{t}^{2 n}\right], \quad \mathrm{HB}_{\mathfrak{u}(1), n}=\mathbb{C}^{2} / \mathbb{Z}_{n} \\
J=Y Z, \quad W^{+}=Y^{n}, \quad W^{-}=Z^{n}, \quad W^{+} W^{-}=J^{n} \\
\text { agrees with [T.Nishinaka and Y.Tachikawa (2016)] }
\end{array}
$$

Rank-1 theories: $G=S U(2)$

$$
\begin{aligned}
& \mathcal{I}_{\mathbb{Z}_{n}, \mathrm{CB}}^{\mathfrak{s u}(2)}(x)= \begin{cases}\mathrm{PE}\left[x^{2}\right] & \mathrm{n}=1 \\
\mathrm{PE}\left[x^{n}\right] & \mathrm{n}=2,4,6 \\
\operatorname{PE}\left[x^{6}\right] & \mathrm{n}=3\end{cases} \\
& \quad \mathrm{CB}_{\mathfrak{s u}(2), n} \cong \mathbb{C} \\
& \quad u=\frac{1}{2} \operatorname{Tr}\left[X^{2}\right] \mapsto \widetilde{u}=u^{n / E(u)}(n=2,4,6)
\end{aligned} \quad u \mapsto \widetilde{u}=u^{3}(n=3) \text { ) }
$$

agrees with [P.C.Argyres and M.Martone (2016)]

$$
\begin{gathered}
\mathrm{HS}_{\mathbb{Z}_{n}}^{\mathfrak{s u}(2)}(\mathfrak{t}, y)=\left\{\begin{array}{llc}
\operatorname{PE}\left[\left(1+y^{2}+y^{-2}\right) \mathfrak{t}^{2}-\mathfrak{t}^{4}\right] & \mathrm{n}=1 \\
\operatorname{PE}\left[\mathfrak{t}^{2}+\left(y^{n}+y^{-n}\right) \mathfrak{t}^{n}-\mathfrak{t}^{2 n}\right] & \mathrm{n}=2,4,6 & \mathrm{HB}_{\mathfrak{s u}(2), n} \cong \mathbb{C}^{2} / \mathbb{Z}_{n} \\
\operatorname{PE}\left[\mathfrak{t}^{2}+\left(y^{6}+y^{-6}\right) \mathfrak{t}^{6}-\mathfrak{t}^{12}\right] & \mathrm{n}=3 & (n=2,4,6)
\end{array}\right. \\
W^{+}=\frac{1}{2} \operatorname{Tr}\left[Y^{n}\right], \quad W^{-}=\frac{1}{2} \operatorname{Tr}\left[Z^{n}\right], \quad J=\frac{1}{2} \operatorname{Tr}[Y Z]
\end{gathered} W^{+} W^{-}=J^{n}{ }^{n} \begin{aligned}
& \text { agrees with } \quad[\text { T.Nishinaka and Y.Tachikawa (2016)] }
\end{aligned}
$$

$$
\text { E.g. } \mathfrak{g}=A_{3} \quad u_{j}=\frac{1}{j} \operatorname{Tr}\left[X^{j}\right], \quad u_{j} \mapsto e^{\frac{2 \pi i}{n} \Delta\left(u_{j}\right)} u_{j}, \quad j=2,3,4
$$

| n | $\operatorname{PLog}\left[\mathcal{I}_{\mathbb{Z}_{n}, \mathrm{CB}}^{\mathfrak{s u}(4)}(x)\right]$ | Generators | Relation |
| :---: | :---: | :---: | :---: |
| 1 | $x^{2}+x^{3}+x^{4}$ | $u_{2}, u_{3}, u_{4}$ | freely generated |
| 2 | $x^{2}+x^{4}+x^{6}$ | $u_{2}, u_{4}, u_{3}^{2}$ | freely generated |
| 3 | $x^{3}+2 x^{6}+x^{12}-x^{18}$ | $u_{3}, u_{2}^{3}, u_{2} u_{4}, u_{4}^{3}$ | $u_{2}^{3} u_{4}^{3}=\left(u_{2} u_{4}\right)^{3}$ |
| 4 | $2 x^{4}+x^{8}+x^{12}-x^{16}$ | $u_{2}^{2}, u_{4}, u_{2} u_{3}^{2}, u_{3}^{4}$ | $u_{2}^{2} u_{3}^{4}=\left(u_{2} u_{3}^{2}\right)^{2}$ |
| 6 | $3 x^{6}+x^{12}-x^{18}$ | $u_{2}^{3}, u_{3}^{2}, u_{2} u_{4}, u_{4}^{3}$ | $u_{2}^{3} u_{4}^{3}=\left(u_{2} u_{4}\right)^{3}$ |

## Generically higher ranks CBs are not freely generated !!!!

agrees with [P.C. Argyres and M.Martone (2018)], [A.Bourget, AP and D.Rodríguez-Gómez (2018)]

## Contents of the talk

(1) Constructing $4 \mathrm{~d} \mathcal{N}=3$ theories
(2) The discrete gauging prescription
(3) Results

4 Summary and conclusions

## Summary and conclusions

## We gave the prescription for the computation of the SCl

4d $\mathcal{N}=4 \quad(G, \tau)$
$\mathbb{Z}_{n}$ enhancement


- We studied:
- The Coulomb branch limit.
- The Higgs branch Hilbert series.
- In general the CBs of the daughter QFTs are not freely generated.


## THANKS FOR YOUR ATTENTION

## $s u(2,2 \mid \mathcal{N})$ representation theory

- $\operatorname{su}(2,2 \mid 4)\left(E, j_{1}, j_{2}, R_{1}, R_{2}, R_{3}\right)$, the maximal bosonic subalgebra reads

$$
u(1)_{E} \oplus s u(2)_{1} \oplus s u(2)_{2} \oplus s u(4)
$$

$$
s u(4) \rightarrow s u(3) \oplus u(1)_{r_{\mathcal{N}}=3}
$$

- $s u(2,2 \mid 3)\left(E, j_{1}, j_{2}, R_{1}, R_{2}, r_{\mathcal{N}=3}\right)$, the maximal bosonic subalgebra

$$
u(1)_{E} \oplus S U(2)_{1} \oplus S U(2)_{2} \oplus s u(3) \oplus u(1)_{r_{\mathcal{N}=3}}
$$

where

$$
r_{\mathcal{N}=3}=\frac{R_{1}}{3}+\frac{2 R_{2}}{3}+R_{3}
$$

## $s u(2,2 \mid \mathcal{N})$ representation theory

$$
s u(3) \oplus u(1)_{r_{\mathcal{N}}=3} \rightarrow \operatorname{su}(2)_{R} \oplus u(1)_{r} \oplus u(1)_{f}
$$

We choose $s u(2,2 \mid 2) \subset s u(2,2 \mid 3)\left(E, j_{1}, j_{2}, R, r, f\right)$

$$
u(1)_{E} \oplus s u(2)_{1} \oplus s u(2)_{2} \oplus s u(2)_{R} \oplus u(1)_{r} \oplus u(1)_{f}
$$

where

$$
r=\frac{R_{1}}{2}+R_{2}+\frac{R_{3}}{2}, \quad R=\frac{R_{1}}{2}, \quad f=R_{3}
$$

## S-fold construction

S-folds, labelled by $\mathbb{Z}_{p} \subset \mathbb{Z}_{k}$ global symmetries

Mother Theory: $\left(N, k, l=\frac{k}{p} \in \mathbb{Z}\right)$

Coulomb branch operators MT: $k, 2 k, \ldots,(N-1) k ; N I$

Discrete gauging $\mathbb{Z}_{p}: \mathrm{MT} \longrightarrow$ Daughter Theory $(N, k, I, p)$

Coulomb branch operators DT:
$k, 2 k, \ldots,(N-1) k ; N p$
$\Rightarrow$ No relations !!!

