4d \mathcal{N} = 3 indices via discrete gauging

based on T. Bourton, AP and E. Pomoni arXiv:1804.05396 [hep-th]

Alessandro Pini

17 July, 2018

Introduction and motivations

- We did not know that $4d \mathcal{N} = 3$ QFTs exist until very recently !!! [I.García-Etxebarria and D.Regalado (2015)]
- By $\mathcal{N} = 3$ SCA alone $!! \Rightarrow$ Main properties: [O.Aharony and M. Evtikhiev (2015)]
 - * Have no marginal couplings \Rightarrow are isolated fixed points.
 - * They do not have a Lagrangian description.
 - * The only flavour symmetry is an R-symmetry.
 - * The conformal central charges (a, c) must be equal.

Introduction and motivations

- We did not know that $4d \mathcal{N} = 3$ QFTs exist until very recently !!! [I.García-Etxebarria and D.Regalado (2015)]
- By $\mathcal{N} = 3$ SCA alone $!! \Rightarrow$ Main properties: [O.Aharony and M. Evtikhiev (2015)]
 - * Have no marginal couplings \Rightarrow are isolated fixed points.
 - * They do not have a Lagrangian description.
 - * The only flavour symmetry is an R-symmetry.
 - * The conformal central charges (a, c) must be equal.

Which tools we can use ?

Introduction and motivations

- We did not know that $4d \mathcal{N} = 3$ QFTs exist until very recently !!! [I.García-Etxebarria and D.Regalado (2015)]
- By $\mathcal{N} = 3$ SCA alone $!! \Rightarrow$ Main properties: [O.Aharony and M. Evtikhiev (2015)]
 - * Have no marginal couplings \Rightarrow are isolated fixed points.
 - * They do not have a Lagrangian description.
 - * The only flavour symmetry is an R-symmetry.
 - * The conformal central charges (a, c) must be equal.

Which tools we can use ?

- F-theory and M-theory construction. [I.García-Etxebarria and D.Regalado (2015)]
- Gravity dual description ⇒ large N limit. [I.García-Extebarria and D.Regalado (2015)],[O.Aharony and Y.Tachikawa (2016)],[Y.Imamura and S.Yokoyama (2016)]
- Superconformal bootstrap and chiral algebra techniques. [T.Nishinaka and Y.Tachikawa. (2016)],[M.Lemos, P.Liendo et al. (2016)]

Alessandro Pini

17 July, 2018 3 / 19

(1) Constructing 4d \mathcal{N} = 3 theories

2 The discrete gauging prescription

Summary and conclusions

① Constructing 4d \mathcal{N} = 3 theories

The discrete gauging prescription

3 Results

Construction via S-folds

F-theory on $\mathbb{R}^{1,3} \times (\mathbb{R}^6 \times T^2)/\mathbb{Z}_k$, $\mathbb{Z}_k \subset SO(6)_R \times SL(2,\mathbb{Z})$. $e^{\frac{2\pi i}{k}(r_k + s_k)} \in \mathbb{Z}_k$

•
$$SO(6)_R$$
 r_k acts on \mathbb{R}^6
• $SL(2,\mathbb{Z})$ s_k acts on T^2 $z = x + \tau y$
- For $k = 1, 2 \Rightarrow \mathcal{N} = 4$ SYM $(k = 2 \Rightarrow \text{ orientifolds}).$

- For $k = 3, 4, 6 \Rightarrow$ fixed complex structure $\tau = e^{i\pi/3}, i, e^{i\pi/3}$. $\mathcal{N} = 3$ strongly coupled SCFT

4d \mathcal{N} = 3 theories via discrete gauging

[0.Aharony and Y.Tachikawa (2016)], [P.C.Argyres and M.Martone (2018)] **Mother theory**: $\mathcal{N} = 4$ SYM in $4d(G, \tau)$. $\mathfrak{g} = \operatorname{Lie}(G) = A, D, E$ or $\mathfrak{u}(N)$. We focus on local operators $\Rightarrow SL(2,\mathbb{Z})$ is the self duality group.

The global symmetry group is at least: PSU(2,2|4)

If $\tau = \{ any, e^{i\pi/3}, i, e^{i\pi/3} \} \Rightarrow \mathbb{Z}_n$ enhancement n = 2, 3, 4, 6 $\mathbb{Z}_n \bigvee$ gauging Daughter theory: $\mathcal{N} = 4, n = 2$ or $\mathcal{N} = 3, n = 3, 4, 6$ $4d \mathcal{N} = 3 \text{ as } \mathcal{N} = 2 \text{ QFTs}$

 $U(3)_R \mapsto SU(2)_R \times U(1)_r \times U(1)_f$

 $(X, Y, Z) \in V_{\mathcal{N}=4}$

Coulomb branch CB (Y = Z = 0)

 $X \mapsto u_j: 1 \le j \le N = \operatorname{rank}[\mathfrak{g}], \quad E(u_j) = r(u_j),$

 $\mathbb{Z}_n: u_j \mapsto e^{\frac{2\pi i}{n}E(u_j)}u_j$

Higgs branch HB (X = 0)

$$(Y,Z) \mapsto W^{(f)}: \quad E(W^{(f)}) = 2R(W^{(f)}) \quad f \in U(1)_f$$

$$\mathbb{Z}_n: W^{(f)} \mapsto e^{\frac{2\pi i}{n}f} W^{(f)}$$

2 The discrete gauging prescription

Computation of the N = 4 mother theory SCI

[C. Romelsberger (2005)], [J.Kinney, J.M.Maldacena, S.Minwalla and S.Raju (2005)]

$$\mathcal{I}(\mu_i) = \operatorname{Tr}_{\mathbb{S}^3}\left[(-1)^F e^{\mu_i J_i} \right], \quad \left[J_i, \mathcal{Q} \right] = 0 \quad \delta = \{ \mathcal{Q}, \mathcal{Q}^\dagger \} = 0$$

Computation in the free theory

$$\frac{\partial}{\partial \tau} \mathcal{I}(\mu_i) = 0$$

$$\int d\mu_{G} \operatorname{PE}[i(...)\chi_{adj}^{G}]$$
Single letter index

The index gauging prescription

At
$$\tau = \{ any, e^{\pi i/3}, i, e^{\pi i/3} \} \Rightarrow \mathbb{Z}_n$$
 enhancement \Rightarrow extra fugacity ϵ

$$\mathcal{I}_{\mathcal{M}_{\mathcal{N}=4}}(\mu_{i},\epsilon) = \sum_{\mathcal{M}_{\mathcal{N}=4}\in shorts} \mathcal{I}_{\mathcal{M}_{\mathcal{N}=4}}(\mu_{i})\epsilon^{r_{n}+s_{n}}$$

We gauge the
$$\mathbb{Z}_n$$
 symmetry

$$\mathcal{I}_{\mathbb{Z}_n}(\mu_i) \coloneqq \frac{1}{|\mathbb{Z}_n|} \sum_{\epsilon \in \mathbb{Z}_n} \mathcal{I}_{\mathcal{M}_{\mathcal{N}=4}}(\mu_i, \epsilon) \implies r_n + s_n = 0 \mod n$$

Projection to \mathbb{Z}_n gauge invariant operators

Alessandro Pini

4d \mathcal{N} = 3 indices via discrete gauging

17 July, 2018 11 / 19

In these two cases there is not recombination !!!

[A.Gadde, L.Rastelli, S.S.Razamat and W.Yan (2011)]

The Coulomb branch limit: X (Y, Z = 0) $i_{CB}(x) = x, (r_n + s_n)(X) = r \Rightarrow x \mapsto \epsilon x$ $\mathcal{I}_{\mathbb{Z}_n, CB}(x) = \frac{1}{|\mathbb{Z}_n|} \sum_{\epsilon \in \mathbb{Z}_n} \int d\mu_G \operatorname{PE}[i_{CB}(x\epsilon)\chi^G_{adj}]$

Higgs branch Hilbert series: (Y, Z), (X = 0)

$$\mathrm{HS}(\mathfrak{t}, y, \epsilon) \coloneqq \mathrm{Tr}_{\mathcal{H}}[\mathfrak{t}^{2R} y^{f} \epsilon^{r_{n} + s_{n}}], \quad (r_{n} + s_{n})(Y, Z) = f \quad \Rightarrow \quad \mathbf{y} \mapsto \epsilon \mathbf{y}$$

$$\mathrm{HS}_{\mathbb{Z}_n}(\mathfrak{t}, y) = \frac{1}{|\mathbb{Z}_n|} \sum_{\epsilon \in \mathbb{Z}_n} \int d\mu_G \mathcal{F}(\mathfrak{t}, \epsilon y)$$

Coulomb branch

 $\mathcal{I}^{\mathfrak{u}(1)}_{\mathbb{Z}_n,\mathrm{CB}}(x) = \mathrm{PE}[x^n], \qquad \qquad \mathrm{CB}_{\mathfrak{u}(1),n} \cong \mathbb{C}$

$$u = X \mapsto \widetilde{u} = u^n$$
,

agrees with [O.Aharony and Y.Tachikawa (2015)], [P.C.Argyres and M.Martone (2016)]

Higgs branch

$$\begin{split} \mathrm{HS}_{\mathbb{Z}_n}^{\mathfrak{u}(1)}(\mathfrak{t}, y) &= \mathrm{PE}[\mathfrak{t}^2 + (y^n + y^{-n})\mathfrak{t}^n - \mathfrak{t}^{2n}], \quad \mathrm{HB}_{\mathfrak{u}(1), n} = \mathbb{C}^2/\mathbb{Z}_n, \\ J &= YZ, \quad W^+ = Y^n, \quad W^- = Z^n, \qquad W^+ W^- = J^n \end{split}$$

agrees with [T.Nishinaka and Y.Tachikawa (2016)]

$$\begin{aligned} \mathcal{I}_{\mathbb{Z}_n,\mathrm{CB}}^{\mathfrak{su}(2)}(x) &= \begin{cases} \mathrm{PE}[x^2] & n=1\\ \mathrm{PE}[x^n] & n=2,4,6\\ \mathrm{PE}[x^6] & n=3 \end{cases} \\ u &= \frac{1}{2}\mathrm{Tr}[X^2] \ \mapsto \ \widetilde{u} = u^{n/E(u)} \ (n=2,4,6) \qquad u \mapsto \widetilde{u} = u^3 \ (n=3) \\ & \text{agrees with [P.C.Argyres and M.Martone (2016)]} \end{aligned}$$

$$\begin{split} \mathrm{HS}_{\mathbb{Z}_n}^{\mathfrak{su}(2)}(\mathfrak{t},y) &= \begin{cases} \mathrm{PE}[(1+y^2+y^{-2})\mathfrak{t}^2-\mathfrak{t}^4] & \mathsf{n}=1 \\ \mathrm{PE}[\mathfrak{t}^2+(y^n+y^{-n})\mathfrak{t}^n-\mathfrak{t}^{2n}] & \mathsf{n}=2,4,6 \\ \mathrm{PE}[\mathfrak{t}^2+(y^6+y^{-6})\mathfrak{t}^6-\mathfrak{t}^{12}] & \mathsf{n}=3 \end{cases} & \\ W^+ &= \frac{1}{2}\mathrm{Tr}[Y^n], \quad W^- &= \frac{1}{2}\mathrm{Tr}[Z^n], \quad J = \frac{1}{2}\mathrm{Tr}[YZ] \qquad W^+W^- = J^n \end{split}$$

agrees with [T.Nishinaka and Y.Tachikawa (2016)]

Alessandro Pini

4d \mathcal{N} = 3 indices via discrete gauging

17 July, 2018 15 / 19

Higher ranks Coulomb branches

~

E.g.
$$\mathfrak{g} = A_3$$
 $u_j = \frac{1}{j} \operatorname{Tr}[X^j], \quad u_j \mapsto e^{\frac{2\pi i}{n} \Delta(u_j)} u_j, \quad j = 2, 3, 4$

n	$\operatorname{PLog}\left[\mathcal{I}^{\mathfrak{su}(4)}_{\mathbb{Z}_n,\operatorname{CB}}(x) ight]$	Generators	Relation
1	$x^{2} + x^{3} + x^{4}$	U2, U3, U4	freely generated
2	$x^{2} + x^{4} + x^{6}$	u_2, u_4, u_3^2	freely generated
3	$x^3 + 2x^6 + x^{12} - x^{18}$	$u_3, u_2^3, u_2u_4, u_4^3$	$u_2^3 u_4^3 = (u_2 u_4)^3$
4	$2x^4 + x^8 + x^{12} - x^{16}$	$u_2^2, u_4, u_2u_3^2, u_3^4$	$u_2^2 u_3^4 = (u_2 u_3^2)^2$
6	$3x^6 + x^{12} - x^{18}$	$u_2^3, u_3^2, u_2u_4, u_4^3$	$u_2^3 u_4^3 = (u_2 u_4)^3$

Generically higher ranks CBs are not freely generated !!!!

agrees with [P.C. Argyres and M.Martone (2018)], [A.Bourget, AP and D.Rodríguez-Gómez (2018)]

3 Results

Summary and conclusions

We gave the prescription for the computation of the SCI

- We studied:
 - The Coulomb branch limit.
 - The Higgs branch Hilbert series.
- In general the CBs of the daughter QFTs are not freely generated.

THANKS FOR YOUR ATTENTION

$su(2,2|\mathcal{N})$ representation theory

• su(2,2|4) $(E, j_1, j_2, R_1, R_2, R_3)$, the maximal bosonic subalgebra reads

 $u(1)_E \oplus su(2)_1 \oplus su(2)_2 \oplus su(4)$

 $su(4) \rightarrow su(3) \oplus u(1)_{r_{\mathcal{N}}=3}$

• su(2,2|3) $(E, j_1, j_2, R_1, R_2, r_{\mathcal{N}=3})$, the maximal bosonic subalgebra $u(1)_E \oplus SU(2)_1 \oplus SU(2)_2 \oplus su(3) \oplus u(1)_{r_{\mathcal{N}=2}}$

where

$$r_{\mathcal{N}=3} = \frac{R_1}{3} + \frac{2R_2}{3} + R_3$$

$$\begin{aligned} su(3)\oplus u(1)_{r_{\mathcal{N}}=3} \to su(2)_{R}\oplus u(1)_{r}\oplus u(1)_{f} \end{aligned}$$

We choose $su(2,2|2)\subset su(2,2|3)$ (E,j_{1},j_{2},R,r,f)

$$u(1)_E \oplus su(2)_1 \oplus su(2)_2 \oplus su(2)_R \oplus u(1)_r \oplus u(1)_f$$

where

$$r = \frac{R_1}{2} + R_2 + \frac{R_3}{2}, \quad R = \frac{R_1}{2}, \quad f = R_3$$

S-folds, labelled by $\mathbb{Z}_p \subset \mathbb{Z}_k$ global symmetries

Mother Theory:
$$(N, k, l = \frac{k}{p} \in \mathbb{Z})$$

Coulomb branch operators MT: k, 2k, ..., (N-1)k; NI

Discrete gauging \mathbb{Z}_p : **MT** \rightarrow **Daughter Theory** (N, k, l, p)

Coulomb branch operators DT: k, 2k, ..., (N-1)k; Np \Rightarrow No relations !!!