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Introduction

Gauge theories initially formulated using simple Lie algebras. Possible
extensions include:

I Products of many Lie algebras / groups

[Gaiotto, 0904.2715]

I Global structure (π1) of the group

[Aharony, Seiberg, Tachikawa, 1305.0318]

I What about the global structure π0 of the group?
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Introduction

Recent interest on discrete gauging (recall Hanany’s talk).
Gauging of a discrete symmetry allows for new Coulomb branch geometries

[Argyres, Martone, 1611.08602]



Introduction

Alternative approach : start from a disconnected gauge group.

In this work

I We consider a special class of non-connected groups

I We focus on 4d N = 2 SCFTs

I We look at local physics and use algebraic counting tools.
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Examples :
S̃U(N) = SU(N) oϕ {1,P}

S̃O(2N) = SO(2N) oϕ {1,P} = O(2N)

(X , 1) (X ,P)

In the case of SU(N), this is related to complex conjugation:

X = A−1P(X )A , AT = (−1)N−1A and detA = 1 .
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Representations (S̃U(3) example)
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Coulomb branch Hilbert Series

Recall the superconformal index for a theory with gauge group G and some
fundamental matter multiplets:

I =

∫
dηG (X )PE

[ ∑
i∈multiplets

f Ri χRi (X )
]

;

where

f V = − σ τ

1− σ τ −
ρ τ

1− ρ τ +
σ ρ− τ 2

(1− ρ τ) (1− σ τ)
,

f
1
2
H =

τ (1− ρ σ)

(1− ρ τ) (1− σ τ)
.



Coulomb branch Hilbert Series

In the limit
τ → 0, ρσ =: t .

we have
f V = t, f

1
2
H = 0 .

This gives the Coulomb branch index [Gadde, Rastelli, Razamat, 1110.3740].

ICoulomb
G (t) =

∫
G

dηG (X )
1

det (1− tΦAdj(X ))
,

This is Molien’s formula for the Hilbert series of invariants of the adjoint
representation.
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What is a Hilbert Series

Let R be a Noetherian graded ring with R0 = C,

R =
⊕
n∈N

Rn .

The Hilbert series of R is

HS (R, t) =
∑
n∈N

tn dimCRn .

Example :

HS (C[x ], t) =
1

1− t

For polynomial rings, the Hilbert series is always a rational function [Hilbert,
1890.xxxx]
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What is a Hilbert Series

If the ring is a complete intersection,

HS (C[Gens]/(Rels), t) =

∏
Rels

(
1− tdeg(Rels)

)
∏

Gens

(1− tdeg(Gens))

Example:

HS
(
C[x1, x2, x3]/(x1x2 − x2

3 ), t
)

= 1 + 3t + 5t2 + ... =
1− t2

(1− t)3
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Basic Invariant Theory

Particular case: freely-generated ring

C[x]G ∼= C[I1, . . . , Im] , HS(C[x]G , t) =
1

m∏
i=1

(1− tdeg Ii )
.

In general, Hironaka decomposition for invariant rings:

C[x]G ∼=
p⊕

j=1

JjC[I1, . . . , Im]

HS(C[x]G , t) =

p∑
j=1

tdeg Jj
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i=1
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Consider a finite group G , and a (finite-dimensional complex) representation V .
Consider the ring of invariants

C[V ]G .

Molien’s formula:
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(
C[V ]G , t

)
=

1

|G |
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Weyl Integration Formula

For a class function f ,∫
S̃U(N)

dηS̃U(N)(X )f (X ) =
1

2

[∫
dµ+

N(z)f (z) +

∫
dµ−N (z)f (zP)

]
[Wendt, 1999]

with

dµ+
N(z) =

N−1∏
j=1

dzj
2πizj

∏
α∈R+(AN−1)

(1− z(α)) ,

and

N even: dµ−N (z) =

N/2∏
j=1

dzj
2πizj

∏
α∈R+(BN/2)

(1− z(α)) .

N odd: dµ−N (z) =

(N−1)/2∏
j=1

dzj
2πizj

∏
α∈R+(C(N−1)/2)

(1− z(α)) .



The Coulomb Index

Computation for SU(N):

ICoulomb
SU(N) (t) =

1
N∏
i=2

(1− t i )

,

corresponds to
C[φij ]

SU(N) ∼= C[Tr(φk)k=2,...,N ] ,

polynomial ring without any relation.



The Non-Freely Generated Coulomb Branch

Computation for S̃U(N):

ICoulomb

S̃U(N)
(t) =

∑
k1<···<kr odd

tk1+···+kr∏
i even

(1− t i )
∏

i odd

(1− t2i )
,

Why?
Tr((φP)k) = (−1)kTr(φk) .

There are ”holes” in the structure of invariants.



The Non-Freely Generated Coulomb Branch

Invariant theory interpretation:

1. The primary invariants Ik for 2 ≤ k ≤ N defined by

Ik =

{
Tr(φk) for k even

Tr(φk)2 for k odd
.

2. The secondary invariants

Jk1,...,kr =
r∏

i=1

Tr(φki ) ,

for k1, . . . , kr odd and 3 ≤ k1 < · · · < kr ≤ N, with r even (r = 0
corresponds to the trivial invariant 1).

Relations (among others):

J2
k1,...,kr − Ik1 . . . Ikr = 0 ,



The Non-Freely Generated Coulomb Branch

For N ≥ 5 the Coulomb branch of N = 2 S̃U(N) gauge theories (of genus 0)
is not freely generated.

See also [Argyres, Martone, 1804.03152 ]
[Bourton, Pini, Pomoni, 1804.05396 ]

Example for N = 5: Coulomb branch parametrized by I2, I3, I4, I5, J3,5 with
relation J2

3,5 = I3I5.

Complex singularity of complex dimension 2 parametrized by I2 and I4.
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Higgs branch Hilbert Series

The Higgs branch is (
C[Q, Q̃]/(CF-terms)

)Gauge group

.

Consider the N = 2 SU(N) gauge theory with 2N fundamental hypers.

W ∼ Tr Q̃φQ =⇒ QQ̃ − 1

N
(TrQQ̃)1N = 0

Higgs branch Hilbert series: [Hanany, Feng, He, Mekareeya, Benvenuti,...]

HSU(N) =

∫
dηSU(N)(X )

det
(
1− t2ΦAdj(X )

)
det (1− tΦF(X ))2N det (1− tΦF̄(X ))2N

.

Refine using (S)U(2N) global fugacities. Example

HSU(3) = 1 + t2 (χ10001 + 1) + 2t3χ00100 + t4 (χ01010 + χ10001 + χ20002 + 1) + ...
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Higgs branch Hilbert Series

Now S̃U(N)

HS̃U(N) =

∫
dηS̃U(N)(X )

det
(
1− t2ΦAdj(X )

)
det
(
1− tχFlav

10...0 ⊗ ΦFF̄(X )
) ,

What is the flavor symmetry group?

Mesons satisfy symmetry / antisymmetry relations depending on the parity of
N.
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The Higgs Branch of SQCD

SU(N) U(2N)

S̃U(N) SO(2N) S̃U(N) USp(2N)

Even N Odd N



Examples

HSU(3) = 1 + 36t2 + 40t3 + 630t4 + 1120t5 + 7525t6 + ...

HS̃U(3) = 1 + 21t2 + 20t3 + 336t4 + 560t5 + 3850t6 + ...

The mesons are symmetric

HS̃U(3) = 1 + [2, 0, 0]C3 t
2 +

(
[0, 0, 1]C3 + [1, 0, 0]C3

)
t3

+
(

2 [0, 1, 0]C3 + 2 [0, 2, 0]C3 + [4, 0, 0]C3 + 2
)
t4 + ... .



Examples

HSU(4) = 1 + 64t2 + 2156t4 + 49035t6 + ...

HS̃U(4) = 1 + 28t2 + 1106t4 + 24381t6 + ...

The mesons are anti-symmetric

H(4, 8) = 1 + [0, 1, 0, 0]D4 t
2 +

(
2 [0, 0, 0, 2]D4 + 2 [0, 0, 2, 0]D4

+2 [0, 2, 0, 0]D4 + 2 [2, 0, 0, 0]D4 + [4, 0, 0, 0]D4 + 2
)
t4

+...



String Theory Realization

On a space-time manifold with non-trivial cycles, one can define gauge bundles
with disconnected groups.

Put the class S theory

U(N) SU(N) U(N)

on C × R1,2 × S1 with:

I Twisted punctures

I Twist along S1.
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String Theory Realization

The twisted sector (alone) has been studied
[Mekareeya, Song, Tachikawa, 1212.0545]

The index for a sphere with 3 punctures is

Ĩ =
∑
λ

∏
i=1,2,3

K̃Λi (ai )P̃λ(ai t
Λi )

K̃ρP̃λ(tρ)

=⇒ ”TQFT” structure of superconformal index.

Work in progress : combined sectors.
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Conclusion

I Representation theory of principal extension allows to construct interesting
Lagrangian N = 2 SCFTs

I They have non freely generated CBs in general

I They are type A theories with orthogonal / symplectic global symmetries
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I Quivers and brane realization

I 3d mirror symmetry, monopole formula

I Compactification on a circle and relation with affine gauge symmetry

I Global anomalies ?

Thank you for your attention!
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