The Importance of Being Disconnected: Principal Extension Gauge Theories

Antoine Bourget

Bern, July 17, 2018

Work with Alessandro Pini and Diego Rodriguez-Gomez (1804.01108)
Gauge theories initially formulated using simple Lie algebras. Possible extensions include:

- Products of many Lie algebras / groups

\[\text{SU}(3) \rightarrow \text{SU}(3) \rightarrow \text{SU}(3) \]

\[[\text{Gaiotto}, \ 0904.2715] \]
Gauge theories initially formulated using simple Lie algebras. Possible extensions include:

- Products of many Lie algebras / groups

\[\text{SU}(3) \to \text{SU}(3) \to \text{SU}(3) \]

- Global structure (\(\pi_1 \)) of the group

\[\text{SU}(2) \quad \text{SO}(3)_+ \quad \text{SO}(3)_- \]

![Figure 1: The weights of line operators of gauge theories with \(g = \text{su}(2) \).](Gaiotto, 0904.2715)

- What about the global structure \(\pi_0 \) of the group?
Recent interest on discrete gauging (recall Hanany’s talk). Gauging of a discrete symmetry allows for new Coulomb branch geometries.

[Argyres, Martone, 1611.08602]
Introduction

Alternative approach: start from a disconnected gauge group.

In this work

- We consider a special class of non-connected groups
- We focus on 4d $\mathcal{N} = 2$ SCFTs
- We look at local physics and use algebraic counting tools.
Principal Extension Groups

The Coulomb branch Index

The Higgs Branch of SQCD and the Global Symmetry
Principal Extension Groups

The Coulomb branch Index

The Higgs Branch of SQCD and the Global Symmetry
Principal Extension Groups

Definition of principal extension
\[\tilde{G} = G_{\text{adj}} \rtimes \phi_{\Gamma} \text{ outer} \]
Principal Extension Groups

Definition of principal extension

\[\tilde{G} = G_{\text{adj}} \rtimes_\varphi \Gamma_{\text{outer}} \]
Definition

Examples:

\[\tilde{\text{SU}}(N) = \text{SU}(N) \rtimes \varphi \{1, \mathcal{P}\} \]
Definition

Examples:

\[\tilde{SU}(N) = SU(N) \ltimes \varphi \{1, \mathcal{P}\} \]

\[\tilde{SO}(2N) = SO(2N) \ltimes \varphi \{1, \mathcal{P}\} = O(2N) \]
Definition

Examples:

\[\widetilde{SU}(N) = SU(N) \ltimes \varphi \{1, \mathcal{P}\} \]

\[\widetilde{SO}(2N) = SO(2N) \ltimes \varphi \{1, \mathcal{P}\} = O(2N) \]

\((X, 1)\) \hspace{1cm} \((X, \mathcal{P})\)

In the case of \(SU(N)\), this is related to complex conjugation:

\[X = A^{-1} P (X) A, \quad A^T = (-1)^{N-1} A \]

and \(\det A = 1\).
Definition

Examples:

\[\widetilde{SU}(N) = SU(N) \ltimes \varphi \{1, \mathcal{P}\} \]
\[\widetilde{SO}(2N) = SO(2N) \ltimes \varphi \{1, \mathcal{P}\} = O(2N) \]

In the case of \(SU(N) \), this is related to complex conjugation:

\[\bar{X} = A^{-1} \mathcal{P}(X) A, \quad A^T = (-1)^{N-1} A \quad \text{and} \quad \det A = 1. \]
Representations ($\tilde{SU}(3)$ example)
Outline

Principal Extension Groups

The Coulomb branch Index

The Higgs Branch of SQCD and the Global Symmetry
Recall the superconformal index for a theory with gauge group G and some fundamental matter multiplets:

$$I = \int d\eta_G(X) \text{PE} \left[\sum_{i \in \text{multiplets}} f^{R_i} \chi^{R_i}(X) \right];$$

where

$$f^{V} = -\frac{\sigma \tau}{1 - \sigma \tau} - \frac{\rho \tau}{1 - \rho \tau} + \frac{\sigma \rho - \tau^2}{(1 - \rho \tau)(1 - \sigma \tau)},$$

$$f^{1/2H} = \frac{\tau (1 - \rho \sigma)}{(1 - \rho \tau)(1 - \sigma \tau)}.$$
In the limit

$$\tau \to 0, \quad \rho \sigma =: t.$$

we have

$$f^V = t, \quad f^{\frac{1}{2}H} = 0.$$

This gives the **Coulomb branch index** [Gadde, Rastelli, Razamat, 1110.3740].
In the limit
\[\tau \to 0, \quad \rho\sigma =: t. \]
we have
\[f^V = t, \quad f^{\frac{1}{2}H} = 0. \]
This gives the \textit{Coulomb branch index} \cite{Gadde:2011ik}.

\[\mathcal{I}_G^{\text{Coulomb}}(t) = \int_G d\eta_G(X) \frac{1}{\det (1 - t\Phi_{\text{Adj}}(X))}, \]
This is Molien’s formula for the Hilbert series of invariants of the adjoint representation.
What is a Hilbert Series

Let R be a Noetherian graded ring with $R_0 = \mathbb{C}$,

$$R = \bigoplus_{n \in \mathbb{N}} R_n.$$

The Hilbert series of R is

$$HS(R, t) = \sum_{n \in \mathbb{N}} t^n \dim_{\mathbb{C}} R_n.$$

Example:

$$HS(\mathbb{C}[x], t) = \frac{1}{1 - t}$$
What is a Hilbert Series

Let R be a Noetherian graded ring with $R_0 = \mathbb{C}$,

$$R = \bigoplus_{n \in \mathbb{N}} R_n.$$

The Hilbert series of R is

$$\text{HS}(R, t) = \sum_{n \in \mathbb{N}} t^n \dim_{\mathbb{C}} R_n.$$

Example:

$$\text{HS}(\mathbb{C}[x], t) = \frac{1}{1 - t}$$

For polynomial rings, the Hilbert series is always a rational function [Hilbert, 1890.xxxx]
What is a Hilbert Series

If the ring is a *complete intersection*,

\[
\text{HS}(\mathbb{C}[\text{Gens}]/(\text{Rels}), t) = \prod_{\text{Rels}} \left(1 - t^{\deg(\text{Rels})}\right) \prod_{\text{Gens}} \left(1 - t^{\deg(\text{Gens})}\right)
\]
What is a Hilbert Series

If the ring is a complete intersection,

$$
\text{HS}(\mathbb{C}[\text{Gens}] / (\text{Rels}), t) = \prod_{\text{Rels}} \left(1 - t^{\deg(\text{Rels})}\right) / \prod_{\text{Gens}} \left(1 - t^{\deg(\text{Gens})}\right)
$$

Example:

$$
\text{HS}\left(\mathbb{C}[x_1, x_2, x_3] / (x_1 x_2 - x_3^2), t\right) = 1 + 3t + 5t^2 + \ldots = \frac{1 - t^2}{(1 - t)^3}
$$
Basic Invariant Theory

Particular case: freely-generated ring

\[\mathbb{C}[x]^G \cong \mathbb{C}[I_1, \ldots, I_m], \quad HS(\mathbb{C}[x]^G, t) = \frac{1}{m \prod_{i=1}^{m} (1 - t^{\deg I_i})}. \]
Particular case: freely-generated ring

$$\mathbb{C}[x]^G \cong \mathbb{C}[l_1, \ldots, l_m], \quad HS(\mathbb{C}[x]^G, t) = \frac{1}{m \prod_{i=1}^m (1 - t^{\deg l_i})}.$$

In general, Hironaka decomposition for invariant rings:

$$\mathbb{C}[x]^G \cong \bigoplus_{j=1}^p J_j \mathbb{C}[l_1, \ldots, l_m]$$

$$HS(\mathbb{C}[x]^G, t) = \frac{\sum_{j=1}^p t^{\deg J_j}}{m \prod_{i=1}^m (1 - t^{\deg l_i})}.$$
Consider a finite group G, and a (finite-dimensional complex) representation V. Consider the ring of invariants $\mathbb{C}[V]^G$.
Consider a finite group G, and a (finite-dimensional complex) representation V. Consider the ring of invariants $\mathbb{C}[V]^G$.

Molien’s formula:

$$\text{HS} \left(\mathbb{C}[V]^G, t \right) = \frac{1}{|G|} \sum_{g \in G} \frac{1}{\det_V(1 - t \cdot g)}.$$
Consider a finite group G, and a (finite-dimensional complex) representation V. Consider the ring of invariants $\mathbb{C}[V]^G$.

Molien’s formula:

$$\text{HS} \left((\mathbb{C}[V]^G, t) \right) = \frac{1}{|G|} \sum_{g \in G} \frac{1}{\det_V (1 - t \cdot g)}.$$

For a large class of groups ("reductive"),

$$\frac{1}{|G|} \sum_{g \in G} \longrightarrow \int_G d\eta_G(X).$$
For a class function f,
\[
\int_{\tilde{SU}(N)} d\eta_{\tilde{SU}(N)}(X)f(X) = \frac{1}{2} \left[\int d\mu_+^N(z)f(z) + \int d\mu_-^N(z)f(z^P) \right]
\]

[Wendt, 1999]

with
\[
d\mu_+^N(z) = \prod_{j=1}^{N-1} \frac{dz_j}{2\pi i z_j} \prod_{\alpha \in \mathbb{R}^+(A_{N-1})} (1 - z(\alpha)) ,
\]

and
\[
N \text{ even: } d\mu_-^N(z) = \prod_{j=1}^{N/2} \frac{dz_j}{2\pi i z_j} \prod_{\alpha \in \mathbb{R}^+(B_{N/2})} (1 - z(\alpha)) .
\]

\[
N \text{ odd: } d\mu_-^N(z) = \prod_{j=1}^{(N-1)/2} \frac{dz_j}{2\pi i z_j} \prod_{\alpha \in \mathbb{R}^+(C_{(N-1)/2})} (1 - z(\alpha)) .
\]
The Coulomb Index

Computation for $SU(N)$:

$$\mathcal{I}_{SU(N)}^{\text{Coulomb}}(t) = \frac{1}{\prod_{i=2}^{N}(1 - t^i)},$$

corresponds to

$$\mathbb{C}[\phi_{ij}]^{SU(N)} \cong \mathbb{C}[^{\text{Tr}}(\phi^k)_{k=2,…,N}],$$

polynomial ring without any relation.
Computation for $\widetilde{SU}(N)$:

$$\mathcal{I}_{\text{Coulomb}}^{\text{SU}(N)}(t) = \frac{\sum_{k_1 < \cdots < k_r \text{ odd}} t^{k_1 + \cdots + k_r}}{\prod_{i \text{ even}} (1 - t^i) \prod_{i \text{ odd}} (1 - t^{2i})},$$

Why?

$$\text{Tr}((\phi^P)^k) = (-1)^k \text{Tr}(\phi^k).$$

There are "holes" in the structure of invariants.
Invariant theory interpretation:

1. The primary invariants I_k for $2 \leq k \leq N$ defined by

 \[
 I_k = \begin{cases}
 \text{Tr}(\phi^k) & \text{for } k \text{ even} \\
 \text{Tr}(\phi^k)^2 & \text{for } k \text{ odd}
 \end{cases}
 \]

2. The secondary invariants J_{k_1, \ldots, k_r} for k_1, \ldots, k_r odd and $3 \leq k_1 < \cdots < k_r \leq N$, with r even ($r = 0$ corresponds to the trivial invariant 1).

 \[
 J_{k_1, \ldots, k_r} = \prod_{i=1}^{r} \text{Tr}(\phi^{k_i})
 \]

 Relations (among others):

 \[
 J_{k_1, \ldots, k_r}^2 - I_{k_1} \cdots I_{k_r} = 0,
 \]
For $N \geq 5$ the Coulomb branch of $\mathcal{N} = 2 \tilde{\mathbf{SU}}(N)$ gauge theories (of genus 0) is not freely generated.

See also [Argyres, Martone, 1804.03152]
[Bourton, Pini, Pomoni, 1804.05396]
For $N \geq 5$ the Coulomb branch of $\mathcal{N} = 2 \tilde{\text{SU}}(N)$ gauge theories (of genus 0) is not freely generated.

See also [Argyres, Martone, 1804.03152]
[Bourton, Pini, Pomoni, 1804.05396]

Example for $N = 5$: Coulomb branch parametrized by $I_2, I_3, I_4, I_5, J_{3,5}$ with relation $J_{3,5}^2 = I_3 I_5$.
For $N \geq 5$ the Coulomb branch of $\mathcal{N} = 2$ $\widetilde{SU}(N)$ gauge theories (of genus 0) is not freely generated.

See also [Argyres, Martone, 1804.03152]
[Bourton, Pini, Pomoni, 1804.05396]

Example for $N = 5$: Coulomb branch parametrized by $I_2, I_3, I_4, I_5, J_{3,5}$ with relation $J_{3,5}^2 = I_3 I_5$.

Complex singularity of complex dimension 2 parametrized by I_2 and I_4.
Outline

Principal Extension Groups

The Coulomb branch Index

The Higgs Branch of SQCD and the Global Symmetry
The Higgs branch is

$$\left(\mathbb{C}[Q, \bar{Q}]/(\mathbb{C}F\text{-terms}) \right)^{\text{Gauge group}}.$$
Higgs branch Hilbert Series

The Higgs branch is

\[
\left(\mathbb{C}[Q, \bar{Q}]/(\mathbb{C}F\text{-terms}) \right)^{\text{Gauge group}}.
\]

Consider the \(\mathcal{N} = 2 \) \(SU(N) \) gauge theory with \(2N \) fundamental hypers.

\[
\mathcal{W} \sim \text{Tr} \bar{Q} \phi Q \implies Q\bar{Q} - \frac{1}{N} (\text{Tr} Q\bar{Q}) 1_N = 0
\]
The Higgs branch is

\[\left(\mathbb{C}[Q, \tilde{Q}] / (\mathbb{C}F\text{-terms}) \right)^{\text{Gauge group}}. \]

Consider the \(\mathcal{N} = 2 \ SU(N) \) gauge theory with \(2N \) fundamental hypers.

\[\mathcal{W} \sim \text{Tr} \tilde{Q} \phi Q \quad \implies \quad Q \tilde{Q} - \frac{1}{N} (\text{Tr} Q \tilde{Q}) 1_N = 0 \]

Higgs branch Hilbert series:

\[H_{SU(N)} = \int d\eta_{SU(N)}(X) \frac{\det (1 - t^2 \Phi_{\text{Adj}}(X))}{\det (1 - t \Phi_F(X))^{2N} \det (1 - t \bar{\Phi}_F(X))^{2N}}. \]

Refine using \((S)U(2N)\) global fugacities. Example

\[H_{SU(3)} = 1 + t^2 (\chi_{10001} + 1) + 2t^3 \chi_{00100} + t^4 (\chi_{01010} + \chi_{10001} + \chi_{20002} + 1) + \ldots \]
Now $\tilde{SU}(N)$

$$H_{\tilde{SU}(N)} = \int d\eta_{\tilde{SU}(N)}(X) \frac{\det (1 - t^2 \Phi_{\text{Adj}}(X))}{\det (1 - t \chi_{\text{Flav}}^{10\ldots0} \otimes \Phi_{\bar{F}F}(X))},$$

What is the flavor symmetry group?
Now $\tilde{SU}(N)$

$$H_{\tilde{SU}(N)} = \int d\eta_{\tilde{SU}(N)}(X) \frac{\det (1 - t^2 \Phi_{\text{Adj}}(X))}{\det (1 - t^{\chi_{10\ldots0}} \otimes \Phi_{F\bar{F}}(X))},$$

What is the flavor symmetry group?

Mesons satisfy symmetry / antisymmetry relations depending on the parity of N.
The Higgs Branch of SQCD

\[
\begin{align*}
\text{Even } N & \quad \tilde{\text{SU}}(N) & \text{SO}(2N) \\
\text{Odd } N & \quad \tilde{\text{SU}}(N) & \text{USp}(2N)
\end{align*}
\]
Examples

\[H_{SU(3)} = 1 + 36t^2 + 40t^3 + 630t^4 + 1120t^5 + 7525t^6 + ... \]

\[H_{S\bar{U}(3)} = 1 + 21t^2 + 20t^3 + 336t^4 + 560t^5 + 3850t^6 + ... \]

The mesons are symmetric

\[H_{S\bar{U}(3)} = 1 + [2, 0, 0]_{C_3} t^2 + \left([0, 0, 1]_{C_3} + [1, 0, 0]_{C_3} \right) t^3 \]
\[+ \left(2 [0, 1, 0]_{C_3} + 2 [0, 2, 0]_{C_3} + [4, 0, 0]_{C_3} + 2 \right) t^4 + ... \]
Examples

\[\mathcal{H}_{SU(4)} = 1 + 64t^2 + 2156t^4 + 49035t^6 + \ldots \]
\[\mathcal{H}_{\tilde{SU}(4)} = 1 + 28t^2 + 1106t^4 + 24381t^6 + \ldots \]

The mesons are anti-symmetric

\[\mathcal{H}_{(4, 8)} = 1 + [0, 1, 0, 0]_{D_4} t^2 + \left(2 [0, 0, 0, 2]_{D_4} + 2 [0, 0, 2, 0]_{D_4} + 2 [0, 2, 0, 0]_{D_4} + 2 [2, 0, 0, 0]_{D_4} + [4, 0, 0, 0]_{D_4} + 2 \right) t^4 + \ldots \]
On a space-time manifold with non-trivial cycles, one can define gauge bundles with disconnected groups.
String Theory Realization

On a space-time manifold with non-trivial cycles, one can define gauge bundles with disconnected groups. Put the class S theory

\[\text{on } C \times \mathbb{R}^{1,2} \times S^1 \] with:

- Twisted punctures
- Twist along S^1.
The twisted sector (alone) has been studied

[Mekareeya, Song, Tachikawa, 1212.0545]

The index for a sphere with 3 punctures is

\[\tilde{i} = \sum_{\lambda} \prod_{i=1,2,3} \frac{\tilde{K}_{\Lambda_i}(a_i)\tilde{P}_\lambda(a_it^{\Lambda_i})}{\tilde{K}_\rho\tilde{P}_\lambda(t^\rho)} \]

\[\implies \text{"TQFT" structure of superconformal index.} \]
The twisted sector (alone) has been studied

\[\text{[Mekareeya, Song, Tachikawa, 1212.0545]} \]

The index for a sphere with 3 punctures is

\[
\tilde{i} = \sum_{\lambda} \prod_{i=1,2,3} \frac{\tilde{K}_{\lambda i}(a_i) \tilde{P}_{\lambda}(a_i t^{\lambda_i})}{\tilde{K}_{\rho} \tilde{P}_{\lambda}(t^{\rho})}
\]

\[\Rightarrow \text{\"TQFT\" structure of superconformal index.} \]

Work in progress: combined sectors.
Conclusion

- Representation theory of principal extension allows to construct interesting Lagrangian $\mathcal{N} = 2$ SCFTs
- They have non freely generated CBs in general
- They are type A theories with orthogonal / symplectic global symmetries
Conclusion

Further explorations:

- Spectrum of line operators, other extended operators

Thank you for your attention!
Conclusion

Further explorations:

- Spectrum of line operators, other extended operators
- Quivers and brane realization

Thank you for your attention!
Further explorations:

- Spectrum of line operators, other extended operators
- Quivers and brane realization
- 3d mirror symmetry, monopole formula
Further explorations:

- Spectrum of line operators, other extended operators
- Quivers and brane realization
- 3d mirror symmetry, monopole formula
- Compactification on a circle and relation with affine gauge symmetry

Thank you for your attention!
Further explorations:

- Spectrum of line operators, other extended operators
- Quivers and brane realization
- 3d mirror symmetry, monopole formula
- Compactification on a circle and relation with affine gauge symmetry
- Global anomalies?
Conclusion

Further explorations:
- Spectrum of line operators, other extended operators
- Quivers and brane realization
- 3d mirror symmetry, monopole formula
- Compactification on a circle and relation with affine gauge symmetry
- Global anomalies?

Thank you for your attention!