Universidad de Oviedo

The Importance of Being Disconnected: Principal Extension Gauge Theories

Antoine Bourget

Bern, July 17, 2018

Work with Alessandro Pini and Diego Rodriguez-Gomez (1804.01108)

Introduction

Gauge theories initially formulated using simple Lie algebras. Possible extensions include:

- Products of many Lie algebras / groups

[Gaiotto, 0904.2715]

Introduction

Gauge theories initially formulated using simple Lie algebras. Possible extensions include:

- Products of many Lie algebras / groups

[Gaiotto, 0904.2715]
- Global structure (π_{1}) of the group

Figure 1: The weights of line operators of gauge theories with $\mathbf{g}=s u(2)$.

> [Aharony, Seiberg, Tachikawa, 1305.0318]

- What about the global structure π_{0} of the group?

Introduction

Recent interest on discrete gauging (recall Hanany's talk). Gauging of a discrete symmetry allows for new Coulomb branch geometries

[Argyres, Martone, 1611.08602]

Introduction

Alternative approach : start from a disconnected gauge group.

In this work

- We consider a special class of non-connected groups
- We focus on 4d $\mathcal{N}=2$ SCFTs
- We look at local physics and use algebraic counting tools.

Outline

Principal Extension Groups

The Coulomb branch Index

The Higgs Branch of SQCD and the Global Symmetry

Outline

Principal Extension Groups

The Coulomb branch Index

The Higgs Branch of SQCD and the Global Symmetry

Principal Extension Groups

Principal Extension Groups

$$
A_{N-1}
$$

P-

Definition of principal extension

$$
\widetilde{G}=G_{\text {adj }} \rtimes_{\varphi} \Gamma_{\text {outer }}
$$

Definition

Examples:

$$
\widetilde{\mathrm{SU}}(N)=\mathrm{SU}(N) \rtimes_{\varphi}\{1, \mathcal{P}\}
$$

Definition

Examples:

$$
\begin{gathered}
\widetilde{\mathrm{SU}}(N)=\operatorname{SU}(N) \rtimes_{\varphi}\{1, \mathcal{P}\} \\
\widetilde{\mathrm{SO}}(2 N)=\mathrm{SO}(2 N) \rtimes_{\varphi}\{1, \mathcal{P}\}=\mathrm{O}(2 N)
\end{gathered}
$$

Definition

Examples:

$$
\widetilde{\mathrm{SU}}(N)=\operatorname{SU}(N) \rtimes_{\varphi}\{1, \mathcal{P}\}
$$

Definition

Examples:

$$
\widetilde{\mathrm{SU}}(N)=\operatorname{SU}(N) \rtimes_{\varphi}\{1, \mathcal{P}\}
$$

$$
\widetilde{\mathrm{SO}}(2 N)=\mathrm{SO}(2 N) \rtimes_{\varphi}\{1, \mathcal{P}\}=\mathrm{O}(2 N)
$$

$(X, 1)$

(X, \mathcal{P})

In the case of $\operatorname{SU}(N)$, this is related to complex conjugation:

$$
\bar{X}=A^{-1} \mathcal{P}(X) A, \quad A^{T}=(-1)^{N-1} A \quad \text { and } \quad \operatorname{det} A=1 .
$$

Representations ($\widetilde{\mathrm{SU}}(3)$ EXAmple)

Outline

Principal Extension Groups

The Coulomb Branch Index

The Higgs Branch of SQCD and the Global Symmetry

Coulomb branch Hilbert Series

Recall the superconformal index for a theory with gauge group G and some fundamental matter multiplets:

$$
\mathcal{I}=\int \mathrm{d} \eta_{G}(X) \operatorname{PE}\left[\sum_{i \in \text { multiplets }} f^{\mathcal{R}_{i}} \chi_{\mathcal{R}_{i}}(X)\right] ;
$$

where

$$
\begin{gathered}
f^{V}=-\frac{\sigma \tau}{1-\sigma \tau}-\frac{\rho \tau}{1-\rho \tau}+\frac{\sigma \rho-\tau^{2}}{(1-\rho \tau)(1-\sigma \tau)} \\
f^{\frac{1}{2} H}=\frac{\tau(1-\rho \sigma)}{(1-\rho \tau)(1-\sigma \tau)}
\end{gathered}
$$

Coulomb branch Hilbert Series

In the limit

$$
\tau \rightarrow 0, \quad \rho \sigma=: t
$$

we have

$$
f^{V}=t, \quad f^{\frac{1}{2} H}=0 .
$$

This gives the Coulomb branch index [Gadde, Rastelli, Razamat, 1110.3740].

Coulomb branch Hilbert Series

In the limit

$$
\tau \rightarrow 0, \quad \rho \sigma=: t
$$

we have

$$
f^{V}=t, \quad f^{\frac{1}{2} H}=0 .
$$

This gives the Coulomb branch index [Gadde, Rastelli, Razamat, 1110.3740].

$$
\mathcal{I}_{G}^{\text {Coulomb }}(t)=\int_{G} \mathrm{~d} \eta_{G}(X) \frac{1}{\operatorname{det}\left(1-t \Phi_{\mathrm{Adj}}(X)\right)},
$$

This is Molien's formula for the Hilbert series of invariants of the adjoint representation.

What is a Hilbert Series

Let R be a Noetherian graded ring with $R_{0}=\mathbb{C}$,

$$
R=\bigoplus_{n \in \mathbb{N}} R_{n} .
$$

The Hilbert series of R is

$$
\operatorname{HS}(R, t)=\sum_{n \in \mathbb{N}} t^{n} \operatorname{dim}_{\mathbb{C}} R_{n} .
$$

Example :

$$
\operatorname{HS}(\mathbb{C}[x], t)=\frac{1}{1-t}
$$

What is a Hilbert Series

Let R be a Noetherian graded ring with $R_{0}=\mathbb{C}$,

$$
R=\bigoplus_{n \in \mathbb{N}} R_{n} .
$$

The Hilbert series of R is

$$
\operatorname{HS}(R, t)=\sum_{n \in \mathbb{N}} t^{n} \operatorname{dim}_{\mathbb{C}} R_{n} .
$$

Example :

$$
\operatorname{HS}(\mathbb{C}[x], t)=\frac{1}{1-t}
$$

For polynomial rings, the Hilbert series is always a rational function [Hilbert, 1890.xxxx]

What is a Hilbert Series

If the ring is a complete intersection,

$$
\operatorname{HS}(\mathbb{C}[\text { Gens }] /(\text { Rels }), t)=\frac{\prod_{\text {Rels }}\left(1-t^{\operatorname{deg}(\text { Rels })}\right)}{\prod_{\text {Gens }}\left(1-t^{\operatorname{deg}(\text { Gens })}\right)}
$$

What is a Hilbert Series

If the ring is a complete intersection,

$$
\operatorname{HS}(\mathbb{C}[\mathrm{Gens}] /(\text { Rels }), t)=\frac{\prod_{\text {Rels }}\left(1-t^{\operatorname{deg}(\text { Rels })}\right)}{\prod_{\text {Gens }}\left(1-t^{\operatorname{deg}(\text { Gens })}\right)}
$$

Example:

$$
\operatorname{HS}\left(\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(x_{1} x_{2}-x_{3}^{2}\right), t\right)=1+3 t+5 t^{2}+\ldots=\frac{1-t^{2}}{(1-t)^{3}}
$$

Basic Invariant Theory

Particular case: freely-generated ring

$$
\mathbb{C}[\mathbf{x}]^{G} \cong \mathbb{C}\left[\iota_{1}, \ldots, I_{m}\right], \quad H S\left(\mathbb{C}[\mathbf{x}]^{G}, t\right)=\frac{1}{\prod_{i=1}^{m}\left(1-t^{\operatorname{deg} I_{i}}\right)}
$$

Basic Invariant Theory

Particular case: freely-generated ring

$$
\mathbb{C}[\mathbf{x}]^{G} \cong \mathbb{C}\left[I_{1}, \ldots, I_{m}\right], \quad H S\left(\mathbb{C}[\mathbf{x}]^{G}, t\right)=\frac{1}{\prod_{i=1}^{m}\left(1-t^{\operatorname{deg} I_{i}}\right)}
$$

In general, Hironaka decomposition for invariant rings:

$$
\begin{gathered}
\mathbb{C}[\mathbf{x}]^{G} \cong \bigoplus_{j=1}^{p} J_{j} \mathbb{C}\left[I_{1}, \ldots, I_{m}\right] \\
H S\left(\mathbb{C}[\mathbf{x}]^{G}, t\right)=\frac{\sum_{j=1}^{p} t^{\operatorname{deg} J_{j}}}{\prod_{i=1}^{m}\left(1-t^{\operatorname{deg} I_{i}}\right)} .
\end{gathered}
$$

Basic Invariant Theory

Consider a finite group G, and a (finite-dimensional complex) representation V. Consider the ring of invariants

$$
\mathbb{C}[V]^{G} .
$$

Basic Invariant Theory

Consider a finite group G, and a (finite-dimensional complex) representation V. Consider the ring of invariants

$$
\mathbb{C}[V]^{G} .
$$

Molien's formula:

$$
\operatorname{HS}\left(\mathbb{C}[V]^{G}, t\right)=\frac{1}{|G|} \sum_{g \in G} \frac{1}{\operatorname{det}_{V}(1-t \cdot g)} .
$$

Basic Invariant Theory

Consider a finite group G, and a (finite-dimensional complex) representation V. Consider the ring of invariants

$$
\mathbb{C}[V]^{G} .
$$

Molien's formula:

$$
\operatorname{HS}\left(\mathbb{C}[V]^{G}, t\right)=\frac{1}{|G|} \sum_{g \in G} \frac{1}{\operatorname{det}_{V}(1-t \cdot g)} .
$$

For a large class of groups ("reductive"),

$$
\frac{1}{|G|} \sum_{g \in G} \longrightarrow \int_{G} \mathrm{~d} \eta_{G}(X) .
$$

Weyl Integration Formula

For a class function f,

$$
\int_{\widetilde{\mathrm{SU}}(N)} \mathrm{d} \eta_{\widetilde{\mathrm{SU}}(N)}(X) f(X)=\frac{1}{2}\left[\int \mathrm{~d} \mu_{N}^{+}(z) f(z)+\int \mathrm{d} \mu_{N}^{-}(z) f\left(z^{\mathcal{P}}\right)\right]
$$

[Wendt, 1999]
with

$$
\mathrm{d} \mu_{N}^{+}(z)=\prod_{j=1}^{N-1} \frac{\mathrm{~d} z_{j}}{2 \pi i z_{j}} \prod_{\alpha \in R^{+}\left(A_{N-1}\right)}(1-z(\alpha))
$$

and
N even: $\quad \mathrm{d} \mu_{N}^{-}(z)=\prod_{j=1}^{N / 2} \frac{\mathrm{~d} z_{j}}{2 \pi i z_{j}} \prod_{\alpha \in R^{+}\left(B_{N / 2}\right)}(1-z(\alpha))$.
N odd: $\quad \mathrm{d} \mu_{N}^{-}(z)=\prod_{j=1}^{(N-1) / 2} \frac{\mathrm{~d} z_{j}}{2 \pi i z_{j}} \prod_{\alpha \in R^{+}\left(C_{(N-1) / 2}\right)}(1-z(\alpha))$.

The Coulomb Index

Computation for $\mathrm{SU}(N)$:

$$
\mathcal{I}_{\mathrm{SU}(N)}^{\text {Counb }}(t)=\frac{1}{\prod_{i=2}^{N}\left(1-t^{i}\right)},
$$

corresponds to

$$
\mathbb{C}\left[\phi_{i j}\right]^{\mathrm{SU}(N)} \cong \mathbb{C}\left[\operatorname{Tr}\left(\phi^{k}\right)_{k=2, \ldots, N}\right],
$$

polynomial ring without any relation.

The Non-Freely Generated Coulomb Branch

Computation for $\widetilde{\mathrm{SU}}(N)$:

$$
\mathcal{I}_{\mathrm{SU}(N)}^{\mathrm{Coulomb}}(t)=\frac{\sum_{k_{1}<\cdots<k_{r} \text { odd }} t^{k_{1}+\cdots+k_{r}}}{\prod_{i \text { even }}\left(1-t^{i}\right) \prod_{i \text { odd }}\left(1-t^{2 i}\right)},
$$

Why?

$$
\operatorname{Tr}\left(\left(\phi^{\mathcal{P}}\right)^{k}\right)=(-1)^{k} \operatorname{Tr}\left(\phi^{k}\right) .
$$

There are "holes" in the structure of invariants.

The Non-Freely Generated Coulomb Branch

Invariant theory interpretation:

1. The primary invariants I_{k} for $2 \leq k \leq N$ defined by

$$
I_{k}= \begin{cases}\operatorname{Tr}\left(\phi^{k}\right) & \text { for } k \text { even } \\ \operatorname{Tr}\left(\phi^{k}\right)^{2} & \text { for } k \text { odd }\end{cases}
$$

2. The secondary invariants

$$
J_{k_{1}, \ldots, k_{r}}=\prod_{i=1}^{r} \operatorname{Tr}\left(\phi^{k_{i}}\right)
$$

for k_{1}, \ldots, k_{r} odd and $3 \leq k_{1}<\cdots<k_{r} \leq N$, with r even $(r=0$ corresponds to the trivial invariant 1).
Relations (among others):

$$
J_{k_{1}, \ldots, k_{r}}^{2}-I_{k_{1}} \ldots I_{k_{r}}=0
$$

The Non-Freely Generated Coulomb Branch

For $N \geq 5$ the Coulomb branch of $\mathcal{N}=2 \widetilde{\mathrm{SU}}(N)$ gauge theories (of genus 0) is not freely generated.

See also [Argyres, Martone, 1804.03152]
[Bourton, Pini, Pomoni, 1804.05396]

The Non-Freely Generated Coulomb Branch

For $N \geq 5$ the Coulomb branch of $\mathcal{N}=2 \widetilde{\mathrm{SU}}(N)$ gauge theories (of genus 0) is not freely generated.

See also [Argyres, Martone, 1804.03152]
[Bourton, Pini, Pomoni, 1804.05396]

Example for $N=5$: Coulomb branch parametrized by $I_{2}, I_{3}, I_{4}, I_{5}, J_{3,5}$ with relation $J_{3,5}^{2}=I_{3} / 5$.

The Non-Freely Generated Coulomb Branch

For $N \geq 5$ the Coulomb branch of $\mathcal{N}=2 \widetilde{\mathrm{SU}}(N)$ gauge theories (of genus 0) is not freely generated.

See also [Argyres, Martone, 1804.03152]
[Bourton, Pini, Pomoni, 1804.05396]

Example for $N=5$: Coulomb branch parametrized by $I_{2}, I_{3}, I_{4}, I_{5}, J_{3,5}$ with relation $J_{3,5}^{2}=I_{3} I_{5}$.

Complex singularity of complex dimension 2 parametrized by I_{2} and I_{4}.

Outline

Principal Extension Groups

The Coulomb branch Index

The Higgs Branch of SQCD and the Global Symmetry

Higgs branch Hilbert Series

The Higgs branch is

$$
(\mathbb{C}[Q, \tilde{Q}] /(\text { CF-terms }))^{\text {Gauge group }}
$$

Higgs branch Hilbert Series

The Higgs branch is

$$
(\mathbb{C}[Q, \tilde{Q}] /(\mathbb{C} \text {-terms }))^{\text {Gauge group }}
$$

Consider the $\mathcal{N}=2 \operatorname{SU}(N)$ gauge theory with $2 N$ fundamental hypers.

$$
W \sim \operatorname{Tr} \tilde{Q} \phi Q \quad \Longrightarrow \quad Q \tilde{Q}-\frac{1}{N}(\operatorname{Tr} Q \tilde{Q}) \mathbf{1}_{N}=0
$$

Higgs branch Hilbert Series

The Higgs branch is

$$
(\mathbb{C}[Q, \tilde{Q}] /(\mathbb{C} F \text {-terms }))^{\text {Gauge group }}
$$

Consider the $\mathcal{N}=2 \operatorname{SU}(N)$ gauge theory with $2 N$ fundamental hypers.

$$
W \sim \operatorname{Tr} \tilde{Q} \phi Q \quad \Longrightarrow \quad Q \tilde{Q}-\frac{1}{N}(\operatorname{Tr} Q \tilde{Q}) \mathbf{1}_{N}=0
$$

Higgs branch Hilbert series: [Hanany, Feng, He, Mekareeya, Benvenuti,...]

$$
H_{\mathrm{SU}(N)}=\int \mathrm{d} \eta_{\mathrm{SU}(N)}(X) \frac{\operatorname{det}\left(1-t^{2} \Phi_{\mathrm{Adj}}(X)\right)}{\operatorname{det}\left(1-t \Phi_{\mathrm{F}}(X)\right)^{2 N} \operatorname{det}\left(1-t \Phi_{\overline{\mathrm{F}}}(X)\right)^{2 N}} .
$$

Refine using $(S) U(2 N)$ global fugacities. Example

$$
H_{\mathrm{SU}(3)}=1+t^{2}\left(\chi_{10001}+1\right)+2 t^{3} \chi_{00100}+t^{4}\left(\chi_{01010}+\chi_{10001}+\chi_{20002}+1\right)+\ldots
$$

Higgs branch Hilbert Series

Now $\widetilde{S U}(N)$

$$
H_{\widetilde{S U}(N)}=\int \mathrm{d} \eta_{\widetilde{\mathrm{SU}}(N)}(X) \frac{\operatorname{det}\left(1-t^{2} \Phi_{\mathrm{Adj}}(X)\right)}{\operatorname{det}\left(1-t \chi_{\left.\chi_{10, \ldots 0}^{\mathrm{Flav}} \otimes \Phi_{\mathrm{FF}}(X)\right)},\right.}
$$

What is the flavor symmetry group?

Higgs branch Hilbert Series

Now $\widetilde{S U}(N)$

$$
H_{\widetilde{S U}(N)}=\int \mathrm{d} \eta_{\widetilde{\mathrm{SU}}(N)}(X) \frac{\operatorname{det}\left(1-t^{2} \Phi_{\mathrm{Adj}}(X)\right)}{\operatorname{det}\left(1-t \chi_{\chi_{10, \ldots 0} \mathrm{lav}} \otimes \Phi_{\mathrm{FF}}(X)\right)},
$$

What is the flavor symmetry group?

Mesons satisfy symmetry / antisymmetry relations depending on the parity of N.

The Higgs Branch of SQCD

Examples

$$
\begin{aligned}
& \mathcal{H}_{S U(3)}=1+36 t^{2}+40 t^{3}+630 t^{4}+1120 t^{5}+7525 t^{6}+\ldots \\
& \mathcal{H}_{\widetilde{S U}(3)}=1+21 t^{2}+20 t^{3}+336 t^{4}+560 t^{5}+3850 t^{6}+\ldots
\end{aligned}
$$

The mesons are symmetric

$$
\begin{aligned}
\mathcal{H}_{\widetilde{S U}(3)}= & 1+[2,0,0]_{c_{3}} t^{2}+\left([0,0,1]_{c_{3}}+[1,0,0]_{c_{3}}\right) t^{3} \\
& +\left(2[0,1,0]_{c_{3}}+2[0,2,0]_{c_{3}}+[4,0,0] c_{c_{3}}+2\right) t^{4}+\ldots
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \mathcal{H}_{S U(4)}=1+64 t^{2}+2156 t^{4}+49035 t^{6}+\ldots \\
& \mathcal{H}_{\widetilde{S U}(4)}=1+28 t^{2}+1106 t^{4}+24381 t^{6}+\ldots
\end{aligned}
$$

The mesons are anti-symmetric

$$
\begin{aligned}
\mathcal{H}_{(4,8)}= & 1+[0,1,0,0]_{D_{4}} t^{2}+\left(2[0,0,0,2]_{D_{4}}+2[0,0,2,0]_{D_{4}}\right. \\
& \left.+2[0,2,0,0]_{D_{4}}+2[2,0,0,0]_{D_{4}}+[4,0,0,0]_{D_{4}}+2\right) t^{4} \\
& +\ldots
\end{aligned}
$$

String Theory Realization

On a space-time manifold with non-trivial cycles, one can define gauge bundles with disconnected groups.

String Theory Realization

On a space-time manifold with non-trivial cycles, one can define gauge bundles with disconnected groups. Put the class \mathcal{S} theory

on $\mathcal{C} \times \mathbb{R}^{1,2} \times S^{1}$ with:

- Twisted punctures
- Twist along S^{1}.

String Theory Realization

The twisted sector (alone) has been studied [Mekareeya, Song, Tachikawa, 1212.0545]

The index for a sphere with 3 punctures is

$$
\tilde{I}=\sum_{\lambda} \prod_{i=1,2,3} \frac{\tilde{K}_{\Lambda_{i}}\left(\mathbf{a}_{i}\right) \tilde{P}_{\lambda}\left(\mathbf{a}_{i} i^{\Lambda_{i}}\right)}{\tilde{K}_{\rho} \tilde{P}_{\lambda}\left(t^{\rho}\right)}
$$

\Longrightarrow "TQFT" structure of superconformal index.

String Theory Realization

The twisted sector (alone) has been studied [Mekareeya, Song, Tachikawa, 1212.0545]

The index for a sphere with 3 punctures is

$$
\tilde{I}=\sum_{\lambda} \prod_{i=1,2,3} \frac{\tilde{K}_{\Lambda_{i}}\left(\mathbf{a}_{i}\right) \tilde{P}_{\lambda}\left(\mathbf{a}_{i} i^{\Lambda_{i}}\right)}{\tilde{K}_{\rho} \tilde{P}_{\lambda}\left(t^{\rho}\right)}
$$

\Longrightarrow "TQFT" structure of superconformal index.

Work in progress : combined sectors.

Conclusion

- Representation theory of principal extension allows to construct interesting Lagrangian $\mathcal{N}=2$ SCFTs
- They have non freely generated CBs in general
- They are type A theories with orthogonal / symplectic global symmetries

Conclusion

Further explorations:

- Spectrum of line operators, other extended operators

Conclusion

Further explorations:

- Spectrum of line operators, other extended operators
- Quivers and brane realization

Conclusion

Further explorations:

- Spectrum of line operators, other extended operators
- Quivers and brane realization
- 3d mirror symmetry, monopole formula

Conclusion

Further explorations:

- Spectrum of line operators, other extended operators
- Quivers and brane realization
- 3d mirror symmetry, monopole formula
- Compactification on a circle and relation with affine gauge symmetry

Conclusion

Further explorations:

- Spectrum of line operators, other extended operators
- Quivers and brane realization
- 3d mirror symmetry, monopole formula
- Compactification on a circle and relation with affine gauge symmetry
- Global anomalies ?

Conclusion

Further explorations:

- Spectrum of line operators, other extended operators
- Quivers and brane realization
- 3d mirror symmetry, monopole formula
- Compactification on a circle and relation with affine gauge symmetry
- Global anomalies ?

Thank you for your attention!

