# Non-Geometric CalabiYau Backgrounds 

CH, Israel and Sarti 1710.00853

A Dabolkar and CH, 2002

## Duality Symmetries

- Supergravities: continuous classical symmetry, broken in quantum theory, and by gauging
- String theory: discrete quantum duality symmetries; not field theory symms
- T-duality: perturbative symmetry on torus, mixes momentum modes and winding states
- U-duality: non-perturbative symmetry of type II on torus, mixes momentum modes and wrapped brane states
- Mirror Symmetry: perturbative symmetry on Calabi-Yau
- Spacetime constructed from local patches
- All symmetries of physics used in patching
- Patching with diffeomorphisms, gives manifold
- Patching with gauge symmetries: bundles
- String theory has new symmetries, not present in field theory. New non-geometric string backgrounds
- Patching with T-duality: T-FOLDS
- Patching with U-duality: U-FOLDS
- Patching with MIRROR SYMM: MIRROR-FOLDS


## T-fold patching



Glue big circle (R) to small (I/R)
Glue momentum modes to winding modes
(or linear combination of momentum and winding)
Not conventional smooth geometry

## T-fold patching



Glue big circle (R) to small (I/R)
Glue momentum modes to winding modes
(or linear combination of momentum and winding) Not conventional smooth geometry

## Non-Geometric Calabi-Yau Geometries

- Non-geometric reductions to $\mathrm{D}=4$ Minkowski space
- For type II, N=2 SUSY in $\mathrm{D}=4$. Fixes many moduli
- Mirrorfold — Mirror symmetry transitions
- Gauged D=4 sugras with N=2 Minkowski vacua
- At minimum of potential: SCFT — asymmetric Gepner model
- Suggestive of novel kind of doubling?
- New class of "compactifications"
- Bigger landscape?
- Could provide ways of escaping no-go theorems
- Kawai \& Sugawara: Non-susy mirrorfolds
- Blumenhagen,Fuchs \& Plauschinn. Gepner models from non-geometric quotient of CY CFT. Fixed point, so intrinsically stringy
- HIS: Gepner from asymm quotient of K3xT² CFT. Freely acting, so susy breaking scale not fixed at string scale. Sugra: good low energy description
- Non-geom from Stringy Scherk-Schwarz CH \& Reid-Edwards, Reid-Edwards and Spanjaard
- G-theory Candelas Constantin Damian Larfors Morales K3 bundle over CP¹, U-duality monodromies.


## Scherk-Schwarz reduction of Supergravity

-Supergravity in D dims:
Global duality G Scalars: G/H
Field $\quad \phi \rightarrow g \phi \quad g \in G$

- Reduce on S 1

$$
\phi\left(x^{m}, y\right)=g(y) \varphi\left(x^{m}\right)
$$

- Monodromy M on S1

$$
\begin{array}{lll} 
& \phi\left(x^{m}, 2 \pi\right)=M \phi\left(x^{m}, 0\right) & M=g(2 \pi) g(0)^{-1} \\
\text { e.g. } & g(y)=\exp (y N) & M=\exp (2 \pi N)
\end{array}
$$

## Scherk-Schwarz reduction of Supergravity

- Reduce on Tn

Monodromy for each S1 $\quad M_{i} \in G \quad\left[M_{i}, M_{j}\right]=0$
Conjugating gives equivalent theory

$$
M_{i}^{\prime}=g M_{i} g^{-1} \quad g \in G
$$

Consistent truncation of sugra to give gauged sugra in D-n dims.
Fields that are twisted typically become massive

## Lifting to string theory

-Duality $G$ broken to duality $G(\mathbb{Z})$
CH\&Townsend $G(\mathbb{Z})$ is automorphism group of charge lattice Moduli space $\quad G(\mathbb{Z}) \backslash G / H$

- Monodromies must be in $G(\mathbb{Z})$
-Compatification with duality twists
$G(\mathbb{Z})$ conjugacy classes Masses quantized

$$
M=\exp (2 \pi N) \in G(\mathbb{Z})
$$

- If D-dim theory comes from 10 or 11 dimensions by compactification on N (e.g. torus or K3), this lifts to "bundle" of $N$ over $\mathrm{Tn}^{n}$ with $G(\mathbb{Z})$ transitions


## Torus Reductions with Duality Twists

If $\mathrm{N}=\mathrm{Td}$ then have Td "bundle" over $\mathrm{T}^{n}$
For bosonic string $\quad \mathrm{G}(\mathbb{Z})=\mathrm{O}(\mathrm{d}, \mathrm{d} ; \mathbb{Z})$
Monodromies in T-duality group: T-fold
String theory on Td: natural formulation on doubled torus $\mathrm{T}^{2 \mathrm{~d}}$ with $\mathrm{O}(\mathrm{d}, \mathrm{d} ; \mathbb{Z})$ acting as diffeomorphisms

T-fold: T2d bundle over $\mathrm{T}^{n}$
Fully doubled: T2d bundle over T2n
$\mathrm{CH}+$ Reid-Edwards Monodromies on doubled torus

## K3 Sugra Reductions

IIA on K3: $\quad \mathrm{G}=\mathrm{O}(4,20), \mathrm{H}=\mathrm{O}(4) \times \mathrm{O}(20)$
$(2,2)$ Supergravity in $d=6$
॥A on $\mathrm{K} 3 \times \mathrm{T}^{2}: \quad \mathrm{G}=\mathrm{O}(6,22), \mathrm{H}=\mathrm{O}(6) \times \mathrm{O}(22)$
$N=4$ Supergravity in $d=4$

Scherk-Schwarz reduction: $\mathrm{d}=6$ theory reduced on $\mathrm{T}^{2}$ with monodromies $M_{1}, M_{2} \in O(4,20)$
Gives gauged $N=4$ supergravity in $d=4$
Reid-Edwards and Spanjaard

## Supersymmetry

Fermions: monodromies in $\operatorname{Pin}(4) \times \mathrm{O}(20)$

Gravitini in $(\mathbf{2}, \mathbf{1}, \mathbf{1}) \mathbf{x}(\mathbf{1}, \mathbf{2}, \mathbf{1})$ of $\mathrm{SU}(2) \times S U(2) \times \mathrm{O}(20)$

Preserving 16 SUSYs:

$$
\begin{aligned}
& M_{i} \in O(20) \\
& M_{i} \in S U(2) \times O(20) \\
& M_{i} \in S U(2) \times S U(2) \times O(20)
\end{aligned}
$$

## K3

Compact Ricci flat Kahler 4-manifolds: K3 and T4
K3 has $S U(2)$ holonomy, hyperkahler. Manifold unique up to diffeomorphism.

Ricci flat metric depends on 22 moduli.
Moduli space

$$
\mathcal{M} \cong O(3,19 ; \mathbb{Z}) \backslash O(3,19) / O(3) \times O(19)
$$

$O(3,19 ; \mathbb{Z})$ : large diffeomorphisms of K3

## K3 cohomology

$$
H^{2}(K 3)=\mathbb{R}^{22} \quad H^{0}(K 3)=H^{4}(K 3)=\mathbb{R}
$$

## K3 cohomology

$H^{2}(K 3)=\mathbb{R}^{22}$

$$
H^{0}(K 3)=H^{4}(K 3)=\mathbb{R}
$$

Metric on forms:

$$
H^{2}(K 3)=\mathbb{R}^{3,19}
$$

$$
\begin{aligned}
& \left(\alpha_{p}, \beta_{4-p}\right)=\int \alpha_{p} \wedge \beta_{4-p} \\
& H^{0}(K 3)+H^{4}(K 3)=\mathbb{R}^{1,1}
\end{aligned}
$$

$\mathbb{R}^{3,0}$ Self-dual harmonic 2-forms; hyperkahler structure $\mathbb{R}^{0,19}$ Anti-self-dual harmonic 2-forms

$$
\begin{gathered}
H^{*}(K 3)=\mathbb{R}^{4,20} \\
H^{*}(K 3)=H^{0}(K 3)+H^{2}(K 3)+H^{4}(K 3)
\end{gathered}
$$

## K3 cohomology

$H^{2}(K 3)=\mathbb{R}^{22}$
Metric on forms:

$$
H^{0}(K 3)=H^{4}(K 3)=\mathbb{R}
$$

$H^{2}(K 3)=\mathbb{R}^{3,19}$

$$
\left(\alpha_{p}, \beta_{4-p}\right)=\int \alpha_{p} \wedge \beta_{4-p}
$$

$$
H^{0}(K 3)+H^{4}(K 3)=\mathbb{R}^{1,1}
$$

$\mathbb{R}^{3,0} \quad$ Self-dual harmonic 2-forms; hyperkahler structure $\mathbb{R}^{0,19}$ Anti-self-dual harmonic 2-forms

Lattice of integral cohomology

$$
\Gamma_{3,19}=H^{2}(K 3 ; \mathbb{Z}) \cong E_{8} \oplus E_{8} \oplus U \oplus U \oplus U
$$

Preserved by $O\left(\Gamma_{3,19}\right) \sim O(3,19 ; \mathbb{Z})$

## IIA String on K3

$\mathrm{G}=\mathrm{O}(4,20 ; \mathbb{Z})$ Automorphism group of CFT, preserves charge lattice
$\Gamma_{4,20}=H^{*}(K 3 ; \mathbb{Z}) \cong E_{8} \oplus E_{8} \oplus U \oplus U \oplus U \oplus U$
$\mathrm{U}: 2$-dim lattice of signature $(1,1)$

$$
\mathcal{M}_{\Sigma} \cong O\left(\Gamma_{4,20}\right) \backslash O(4,20) / O(4) \times O(20)
$$

$\mathrm{O}(3,19 ; \mathbb{Z})$ : large diffeomorphisms of K3
$\mathbb{Z}^{3,19: ~ B-s h i f t s ~}$
Rest of $\mathrm{O}(4,20 ; \mathbb{Z})$ non-geometric
Compactify on $\mathrm{T}^{2}$, monodromies

$$
M_{1}, M_{2} \in O\left(\Gamma_{4,20}\right)
$$

## Heterotic String Dual

$\mathrm{II} A$ string on $\mathrm{K} 3 \longrightarrow$ Heterotic string on $\mathrm{T}^{4}$
CH\&Townsend

IIA string on K3 "bundle" over T²
Heterotic string on T4 "bundle" over T²

Monodromies in heterotic T-duality group $\mathrm{O}(4,20 ; \mathbb{Z})$ : T-fold

Doubled picture: $\mathrm{T}^{4,20}$ bundle over $\mathrm{T}^{2}$

# Compactification of String Theory with Duality Twists 

 Monodromies $M_{i} \in G(\mathbb{Z})$Points in moduli space that give Minkowski-space minima of Scherk-Schwarz scalar potential

Points in moduli space fixed under action of $M_{i} \in G(\mathbb{Z})$
$M_{i} \in G(\mathbb{Z})$ has fixed point
$M_{i} \in G(\mathbb{Z})$ in elliptic conjugacy class

$$
G=S L(2, \mathbb{R})
$$

SL(2,Z) Elliptic conjugacy classes
of order 2,3,4,6

$$
\begin{gathered}
M_{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \quad M_{3}=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right), \quad M_{4}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad M_{6}=\left(\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right) \\
\mathbb{Z}_{2}, \mathbb{Z}_{3} \cdot \mathbb{Z}_{4} \cdot \mathbb{Z}_{6}
\end{gathered}
$$

$$
G=S L(2, \mathbb{R})
$$

SL(2,Z) Elliptic conjugacy classes
of order 2,3,4,6

$$
M_{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \quad M_{3}=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right), \quad M_{4}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad M_{6}=\left(\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right)
$$

$$
\mathbb{Z}_{2}, \mathbb{Z}_{3} \cdot \mathbb{Z}_{4} \cdot \mathbb{Z}_{6}
$$

Corresponding fixed points in

$$
S L(2, \mathbb{Z}) \backslash S L(2, \mathbb{R}) / U(1)
$$

## Minkowski Vacua and Orbifolds

At fixed point $\mathrm{M}_{\mathrm{i}}$ generates $\mathbb{Z}^{p_{i}}$ $\left(M_{i}\right)^{p_{i}}=1$

At this point in moduli space, construction becomes an orbifold, quotient by $M_{i} \times s_{i}$
$G(\mathbb{Z})$ transformation together with shift in $i^{\prime}$ th $S^{1}$

$$
s_{i}: y_{i} \rightarrow y_{i}+2 \pi / p_{i}
$$

Geometric monodromies: orbifolds
T-duality monodromies: asymmetric orbifolds
K3 SCFT automorphisms: (asymmetric) Gepner models
-Reduction with duality twist becomes orbifold at minima of potential, with explicit SCFT construction
-Reduction with duality twist gives extension of orbifold construction to whole of moduli space, identifies effective supergravity theory

- General point in moduli space not critical point. No Minkowski solution there but often e.g. domain wall solutions


## String Constructions with Minkowski Vacua with N=2 SUSY

Need monodromies in elliptic conjugacy classes of $\mathrm{O}(20,4 ; \mathbb{Z})$ : i.e. in

$$
M_{i} \in[O(4) \times O(20)] \cap O(4,20 ; \mathbb{Z})
$$

SUSY $\quad M_{i} \in[S U(2) \times O(20)] \cap O(4,20 ; \mathbb{Z})$
Any such monodromies will give Minkowski vacuum with $\mathrm{N}=2$ SUSY

But finding such conjugacy classes is very hard open problem
Algebraic geometry constructs solutions

## CY Mirror Symmetry

Moduli space of CY factorises

$$
\mathcal{M}_{\text {complex structure }} \times \mathcal{M}_{\text {Kahler }}
$$

Mirror CY has moduli spaces interchanged

$$
\begin{aligned}
& \overline{\mathcal{M}}_{\text {complex structure }}=\mathcal{M}_{\text {Kahler }} \\
& \overline{\mathcal{M}}_{\text {Kahler }}=\mathcal{M}_{\text {complex structure }}
\end{aligned}
$$

## K3 Mirror Symmetry

Moduli space doesn't factorise

$$
\frac{O(4,20)}{O(4) \times O(20)}
$$

No mirror symmetry: all K3's diffeomorphic

For algebraic K 3 , moduli space of CFTs factorises
$\mathcal{M}_{\text {complex }} \times \mathcal{M}_{\text {Kahler }}=\frac{O(2,20-\rho)}{O(2) \times O(20-\rho)} \times \frac{O(2, \rho)}{O(2) \times O(\rho)}$
Picard number $\rho$
Mirror symmetry interchanges factors

## Mirrored Automorphisms

$$
\hat{\sigma}_{p}:=\mu^{-1} \circ \sigma_{p}^{T} \circ \mu \circ \sigma_{p} \quad \mathrm{CH}, \text { Israel and Sarti }
$$

$\mu: X \rightarrow \tilde{X} \quad$ Mirror map for algebraic K3
$\sigma_{p} \quad$ Diffeomorphism of $X$

$$
\begin{aligned}
& \left(\sigma_{p}\right)^{p}=1 \\
& \left(\sigma_{p}^{T}\right)^{p}=1
\end{aligned}
$$

$\sigma_{p}^{T} \quad$ Diffeomorphism of $\tilde{X}$
For suitable $\mathrm{X}, \sigma_{p}$ this acts on charge lattice by an $\mathrm{O}(4,20 ; \mathrm{Z})$ transformation that is elliptic and SUSY

Use such automorphisms for monodromies

## Non-Geometric CY Vacua

- Minkowski vacuum with N=2 SUSY
- Asymmetric Gepner model of Israel \& Thiery
- Explicit SCFT with Landau-Ginsurg formulation, asymmetric orbifold with discrete torsion
- $D=4$ gauged $N=4$ SUGRA, breaking to $N=2$. Outside classification of Horst,Louis,Smyth
- Massless sector: N=2 SUSY, STU model, or STU plus small number of hypermultiplets


## Conclusions

- Non-geometries giving supersymmetric Minkowski vacua of string theory with few massless moduli
- Further non-geometries? Landscape? Physics?
- Mirrored automorphism involves K3 and its mirror. Some bigger picture? e.g. $X \times \tilde{X}$
- General mathematical structure? Generalised CY?

