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Born the Fourth of July ... 1962

	

A great physicist, a wonderful colleague, a tender husband and
father ... we will miss you a lot, thanks for what you left us with



Plan of the Talk

Moduli problem in string theory and AdS4/CFT3

Brane setup and N = 4 quiver theories

Super-gravity, holography and petite Bouffe

Symmetries, spectrum, shortening

N = 2 preserving marginal deformations

Conclusions



Moduli problem and AdS/CFT

Long-standing issue in String Theory
Fluxes generate (super)potentials that can help stabilisation in AdS
then uplift ...
Some moduli deformations escape (gauged) supergravity
description e.g. TsT deformation [Lunin, Maldacena; Imeroni; ...] for
backgrounds with two commuting isometries

τ → τ ′ =
τ

1 + γτ

γ real deformation parameter, τ modulus of e.g. T 2 ∈ S2
L × S2

R

TsT breaks can break part or all super-symmetries
e.g. β deformation in N = 4 SYM [.... Rossi, Sokatchev, STANEV] or other
‘toric’ SCFT’s in D = 4



(Super)conformal manifold and petite bouffe
For N = 1 SCFT’s in D = 4 and for N = 2 SCFT’s in D = 3,
super-conformal manifold Msc Kähler quotient

Msc = {WCPO
∆=D−1=R}/G C .

G C complexified global ‘flavour’ (non R-symmetry) group G
E.g. N = 4 SYM in N = 1 notation U(1)R , G = SU(3)

dimCMc = 2 = 10− 8

[Leigh, Strassler; Aharony, Kol,Yankielowicz; Green, Komargodski, Seiberg, Tachikawa, Wecht; ...]

W IJK
10 = Tr(ΦI{ΦJ ,ΦK})

Holographic description, (supersymmetric) Higgs/Stückelberg
mechanism: petite bouffe {V , ϕ}m=0 → Vm 6=0

∂µJ µ∆=D−1 = 0 , L∆=D → ∂µJ µ∆=D−1+γ = L∆=D+γ

Generalization to higher spins: La Grande Bouffe [MB, Morales, Samleben; Beisert; ...]

∂J (s)
∆=s+D−2 = 0 , L(s−1)

∆=s+D−1 = 0 → ∂J (s)
∆=s+D−2+γ = L(s−1)

∆=s+D−1+γ



Brane setup for N = 4 SCFT’s in D = 3

Brane creation-annihilation [Hanany, Witten], Boundary States [MB, Stanev; ...]

Brane x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 − − − |−| . . . . . .
D5 − − − . . . . − − −

NS5 − − − . − − − . . .

N = 4 in D = 3: 8 Qaȧ
α , Osp(4|4) ⊃ SO(2, 3)× SO(4)

R-symmetry SO(4) = SO(3)456
L × SO(3)789

R = SU(2)V × SU(2)H

Hyperkähler Moduli space M =Mv ×Mh

I Coulomb branch: Mv receives quantum corrections

I Higgs branch: Mh NO corrections

No N = 4 preserving exactly marginal deformations
NO N = 4 Higgsing / petite bouffe [De Alwis, Louis, Mc Allistair, Triendl; ...]

... neither N = 3 preserving (‘quantised’)

... yet there may be N = 2 preserving



Quiver Theories

N = 4 gauge theories: vector-plets and hypermultiplets,

I Electric quiver: D3-branes suspended between NS5-branes and
intersecting D5-branes.

I Magnetic quiver: roles of NS5 and D5 exchanged

Brane data {Na, `a} and {N̂â, ˆ̀̂
a}, linking numbers∑

a

Na = K (D5−branes) ,
∑

â

N̂â = K̂ (NS5−branes)

Electric quiver: K̂ − 1 ‘gauge’ nodes, [g
YM

] = [M] ∼ |∆x3|/α′
At IR fixed point, coexisting global flavor symmetries of SCFT

I D5-branes
∏

a U(Na) manifest in ‘electric quiver’,

I NS5-brane
∏

â U(N̂â) manifest in mirror ‘magnetic quiver’.

Balanced nodes ...



A, B, C of Linear Quivers
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Electric and magnetic quivers of theories (A,B,C ) with N = 8.
In the IR, theories (A,B,C ) have same SU(8)× SU(2)× U(1)
flavor symmetry but different operator content.



‘Fine-prints’ and Young tableaux
Linking numbers, conservation of D3-brane charge
D5’s `a (from right to left), NS5’s ˆ̀̂

a (from left to right)
partitions of N :=

∑
â N̂â

ˆ̀̂
a =

∑
a Na|`a| ↔ Young tableaux ρ, ρ̂

ρ: Na rows of |`a| boxes, ρ̂: N̂â rows of ˆ̀̂
a boxes

Partial ordering ρT>ρ̂: non trivial Higgs branch, ‘good’ [Gaiotto, Witten]
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Figure: Young tableaux of theories (A,B,C ).



Supergravity description
AdS4 compactifications of Type IIB with N = 4 gauged SUGRA

AdS4 × S2
L × S2

R ×w Σ

Σ, open Riemann surface: disk (linear quiver) or annulus (circular
quiver) [D’Hoker, Estes, Gutperle; Assel, Bachas, ...]

Super-conformal symmetry osp(4|4) ⊃ SO(4) isometry of S2
L × S2

R

Two harmonic functions h1,2(z , z̄) positive in interior of Σ, vanish
at points on the boundary
Henceforth Σ infinite strip 0 ≤ Imz ≤ π/2 (disk, linear quiver)
Singularities:

I Na D5-branes at Rez = δa, a = 1, · · · , p, on upper boundary,
I N̂â NS5-branes at Rez = δ̂â, â = 1, · · · , p̂, on lower boundary

Quantization conditions

π`a = −2

p̂∑
â=1

N̂â arctan(e−δa+δ̂â) , π ˆ̀̂
a = 2

p∑
a=1

Na arctan(e−δa+δ̂â)

... seem to fix all moduli parameters ...



Spectrum and N = 4 multiplets
Barring excited-string modes, single-particle states either from 10d
graviton multiplet or from lowest-lying modes of open strings living
on penta-branes. Both have SMax ≤ 2.
Organized in three series of representations of

osp(4|4) ⊃ SO(4) = SU(2)L × SU(2)R

I ‘1/2 BPS’ B1[0]
(L,0)
L and B1[0]

(0,R)
R series with SMax ≤ 1

I ‘1/4 BPS’ B1[0]
(L,R)
L+R series (LR 6= 0) with SMax ≤ 3/2

I ‘semi-short’ A2[0]
(L,R)
L+R+1 series with SMax ≤ 2

Legenda: HWS = [S ]
(L,R)
∆ , B1[0]

(L,0)
L ∼ H2L, B1[0]

(0,R)
R ∼ H̃2R

Ultrashort ‘singleton’ representations, free (twisted) hypers

Ha = ϕa + θaȧ
α ζ

α
ȧ ∼ B1[0]

(1/2;0)
1/2 = [0]

(1/2;0)
1/2 ⊕ [1/2]

(0;1/2)
1

H̃ ȧ = ϕ̃ȧ + θaȧ
α ζ̃

α
a ∼ B1[0]

(0;1/2)
1/2 = [0]

(0;1/2)
1/2 ⊕ [1/2]

(1/2;0)
1



N = 4 Multiplet String mode gauged SUGRA

A2[0]
(0;0)
1 Graviton YES

B1[0]
(1;0)
1 D5 gauge bosons YES

B1[0]
(0;1)
1 NS5 gauge bosons YES

B1[0]
(L>1;0)
L Closed strings L ∈ N only L = 2

B1[0]
(L>1;0)
L Open F-strings L ∈ 1

2 |`a − `b|+ N only L = 2

B1[0]
(0;R>1)
R Closed strings R ∈ N only R = 2

B1[0]
(0;R>1)
R Open D-strings R ∈ 1

2 | ˆ̀̂a − ˆ̀̂
b|+ N only R = 2

B1[0]
(L≥1;R≥1)
L+R Kaluza Klein gravitini (L,R∈N) NO

A2[0]
(L>0;R>0)
1+L+R Kaluza Klein gravitons (L,R∈N) NO

A1[S > 0]
(L;R)
1+S+L+R Stringy excitations NO



Shortening and re-combination
Short N = 4 multiplets see e.g. [Dolan; Cordova, Dumitrescu, Intriligator; ...] ... with some care

A1[S ]
(L,R)
1+S+L+R (S > 0) , A2[0]

(L,R)
1+L+R (S = 0) , B1[0]

(L,R)
L+R

Stress-energy tensor ↔ graviton multiplet ‘semishort’

A2[0]
(0;0)
1 = [0]

(0;0)
1 ⊕ [0]

(0;0)
2 ⊕ [1]

(1;0)
2 ⊕ [1]

(0;1)
2 ⊕ [2]

(0;0)
3 ⊕ fermions

‘Electric’ flavor current ↔ L-vector multiplet ‘1/2 BPS’

B1[0]
(1;0)
1 = [0]

(1;0)
1 ⊕ [1]

(0;0)
2 ⊕ [0]

(0;1)
2 ⊕ fermions

‘Magnetic’ flavor current ↔ R-vector multiplet ‘1/2 BPS’

B1[0]
(0;1)
1 = [0]

(0;1)
1 ⊕ [1]

(0;0)
2 ⊕ [0]

(1;0)
2 ⊕ fermions

At unitarity threshold can re-combine e.g.

L[0]
(0;0)
1 = A2[0]

(0;0)
1 ⊕ B1[0]

(1;1)
2

and get ‘mass’ / ‘anomalous dimension’ (petite bouffe, SMax = 2)



NO N = 4, 3 preserving Marginal Deformations

Scalar operators of dimension ∆ = 3 in N = 4 multiplets:

I NO top components

I NO dead-end components

Yet, relevant N = 4 deformations:

I Scalar [0]
(0;0)
2 in stress-tensor multiplet can trigger a universal

N = 4 mass deformation

I Scalars in electric and magnetic flavor-current multiplets

B1[0]
(1;0)
1 and B1[0]

(0;1)
1 : triplets of flavor masses and

Fayet-Iliopoulos terms

N = 3 preserving ‘deformations’ W = kTr(Φ2) (quantized)



Looking for N = 2 preserving Marginal Deformations

Basic N = 2 multiplets (HWS = [S ]
(r)
∆ )

conserved stress-tensor multiplet

A1Ā1[1]
(0)
2 = [1]

(0)
2 ⊕ [ 3

2 ]
(±1)
5/2 ⊕ [2]

(0)
3 ,

vector current multiplet

A2Ā2[0]
(0)
1 = [0]

(0)
1 ⊕ [ 1

2 ]
(±1)
3/2 ⊕ [0]

(0)
2 ⊕ [1]

(0)
2 ,

Chiral multiplets (r > 0)

LB̄1[0]
(r)
r = [0]

(r)
r ⊕ [ 1

2 ]
(r−1)

r+ 1
2

⊕ [0]
(r−2)
r+1 .

Anti-chiral multiplets (r < 0)

B1L̄[0]
(r)
|r | = [0]

(r)
|r | ⊕ [ 1

2 ]
(r+1)

|r |+ 1
2

⊕ [0]
(r+2)
|r |+1 .



N = 2 Marginal Deformations
‘Superpotential’ multiplet LB̄1[0]

(2)
2 (and its conjugate B1L̄[0]

(−2)
2 )

LB̄1[0]
(2)
2 = [0]

(2)
2 ⊕ [ 1

2 ]
(1)
5/2 ⊕ [0]

(0)
3

Can be lifted only by recombination with a vector multiplet

LB̄1[0]
(2)
2 ⊕ B1L̄[0]

(−2)
2 ⊕ A2Ā2[0]

(0)
1 → LL̄[0]

(0)
1 .

Super-symmetric Higgsing / ‘petite’ bouffe SMax = 1

∂µJ µ = 0 , L → ∂µJ µ = L .

Superconformal manifold Msc Kähler quotient

Msc = {λi |Da = 0}/G = {λi}/G C .

Da Kähler moment-maps, a adjoint index of global G
Moral:
look for N = 2 ‘superpotential’ inside N = 4 supermultiplets



osp(4|4) ⊃ osp(2|4)⊕ u(1)F decomposition
u(1)F ‘accidental’ flavor symmetry ⊥ R-symmetry u(1)R : r = L+R
Potential N = 4 representations with ∆ = 2 scalars:

B1[0]
(L,R)
L+R with L+R = 1, 2 or A2[0]

(L,R)
1+L+R with L+R = 0, 1

Lowest entries: stress-tensor and vector-current ... NO GOOD
Good candidates with marginal superpotential LB̄1[0]

(2)
2 (in box)

I From open or closed strings (within gauged-supergravity)

B1[0]
(2;0)
2 = LL̄[0]

(0)(0)
2 ⊕

[
LĀ2[0]

(1)(1)
2 ⊕ LB̄1[0]

(2)(2)
2 ⊕ c .c .

]
,

I from Kaluza-Klein gravitini

B1[0]
(1;1)
2 = LL̄[0]

(0)(0)
2 ⊕

[
LL̄[0]

(0)(2)
2 ⊕ LĀ2[0]

(1)(1)
2 ⊕ LĀ2[0]

(1)(−1)
2 ⊕

LB̄1[0]
(2)(0)
2 ⊕ c .c .

]
⊕

[
LL̄[ 1

2 ]
(0)(1)
5/2 ⊕ LĀ1[ 1

2 ]
(1)(0)
5/2 ⊕ c .c .

]
⊕ LL̄[0]

(0)(0)
3 ,

I From exotic multi-particle states (violate isospin rule)

B1[0]
(3/2;1/2)
2 =

h
LL̄[0]

(0)(1)
2 ⊕ LĀ2[0]

(1)(2)
2 ⊕ LĀ2[0]

(1)(0)
2 ⊕ LB̄1[0]

(2)(1)
2 ⊕ c.c.

i
⊕ LL̄[ 1

2
]
(0)(0)
5/2

⊕
h
LĀ2[0]

(2)(1)
3 ⊕ c.c.

i
.



N = 4 quivers in N = 2 language

N = 2 sub-algebra:

I vector-plets decompose into (V ,Φ) in Adj representation

I hyper-multiplets into pairs (q, q̃) in conjugate representations

N = 2 superpotential: W =
∑

` q`−1,`Φ`q̃`,`−1

Recall: D5-branes grouped in stacks by their linking number,
indicating circular (gauge) node to which they attach.
Quiver data specified by two sets of K̂ − 1 non-negative integers:

I flavor N = {N`} (magnetic quiver A: N = {0, 1, 2, 0, 0, 0, 0})
I gauge n = {n`} (magnetic quiver A: n = {2, 4, 5, 4, 3, 2, 1})

Chiral operators H2L on Higgs branch, in B1[0]
(L;0)
L of N = 4 SCA,

singlets of SU(2)C/R with ∆ = L and SU(2)H/L isospin L = r .
Absolutely protected, survive infrared SCFT.



Chiral Operators on the Higgs branch

Two chiral operators on Higgs branch of magnetic quiver B.
Open-string operator (in red) in bi-fundamental of flavor group
U(2)× U(1), while closed-string operator (in green) flavor singlet.
Both represent marginal superpotential deformations since they

have length 4, and hence belong to B1[0]
(2;0)
2 multiplets.



F-flatness condition on the Higgs branch
F-term conditions for q, q̃ on the Higgs branch

q̃`,`+1 q`+1,` + q`,`−1 q̃`−1,` + q̃`,f` qf`,` = 0

+

+ =    0

Graphical representation of the F-flatness conditions on the Higgs
branch, as linear relations among cut-open string segments.
The dotted red/green semicircles stand for summation over free
flavor/gauge indices of the open strings.



Chiral operators on the Mixed Branch

Gauge-invariant products of chiral fields from both hyper
multiplets (line segments) and vector multiplets (bubbles).
The closed string in figure has 8 line segments and 2 bubbles, and

transforms in the representation B1[0]
(4;2)
6 .

F-term condition

qf`,` Φ` = Φ` q̃`,f` = 0 q`+1,` Φ` ∼ Φ`+1 q`+1,` q̃`,`+1 Φ`+1 ∼ Φ` q̃`,`+1



Chiral Ring: summary for ∆ ≤ 2

I ∆ = 1 in conserved-current multiplets of N = 4. Length-2
‘open strings’ in Adj of U(N`) flavor groups, Length-2 ‘closed
string’ per each of the K̂ − 2 ‘internal’ nodes, subject to
K̂ − 1 F-term conditions, from Tr(Φ`). Number of
independent operators matches dimension of flavor group∏
` U(n`)/U(1). Overall U(1) acts trivially and decouples.

I ∆ = 3/2: No length-3 ‘closed strings’ in accordance with
integer L,R ‘isospin’ selection rule for spin-0 closed strings.
Length-3 ‘open strings’ from neighbouring pairs of flavour
(square) nodes in the bi-fundamental of U(N`)× U(N`+1).

I ∆ = 2: Length-4 chiral operators in B1[0]
(2;0)
2 or B1[0]

(0;2)
2 :

sought for marginal N = 2 superpotential deformations.
‘Open strings’ in symmetric product of Adj of flavor group, or
in bi-fundamental of U(N`)× U(N`+2) (if any).
Bound states of two open strings: “second adjoint”
representation, adjoint representation, and 4th rank
antisymmetric representation.



Chiral Ring and Holography

Emerging pattern: at level ∆ = r single-string chiral operators,
either closed strings or open strings in the bi-fundamental of
U(N`)× U(N`′), subject to

r = 1 + n closed strings, r =
1

2
|`− `′|+ n open strings

Match precisely holographic dual Type IIB string spectrum
Also obtained as scaling dimensions of monopole operators on Coulomb branch of magnetic quiver, in agreement

with mirror symmetry

For linear quivers, can choose basis where all chiral operators =
multi-particle bound states of open strings e.g. built in terms of
‘meson’ matrices Mi

j = q̃u
i qj

u.
Using F-term condition on Higgs branch to “fold and slide” closed
strings along ‘internal’ nodes until they hit the boundary and
‘annihilate’ into open strings.
Caveat: This does not work for circular quivers, with no boundary, that

can support irreducible closed winding strings.



Moduli spaces

Nilpotent orbits, Slodowy slice, Kraft-Procesi transition ... please ask

Ami, Santiago or directly Claudio]

Oρ closure of nilpotent orbit associated to partition ρ of N.
Orbit Oρ consists of all N × N nilpotent matrices whose Jordan
normal form has blocks of sizes given by the partition ρ. Closure
includes orbits of all smaller partitions.
Slodowy slice Sρ associated to ρ partition: transverse slice to orbit
Oρ in the space freely generated by adjoint-valued variables.
Higgs branch of electric theory = Coulomb branch of magnetic
theory given by the intersection

He = Cm = Sρ ∩ Oρ̂T ,

Higgs branch Hm of magnetic theory = Coulomb branch Ce of
electric theory given by ‘mirror’ intersection

Hm = Ce = Sρ̂ ∩ OρT .



Moduli spaces for A,B,C

For ‘our’ models A, B, C with N = 8 and different partitions, 8× 8
‘meson’ matrix Mi

j = q̃u1
i qj

u1

HA
e = CA

m = Ōρ̂t
A

= {M8×8 : TrM = TrM2 = 0,M3 = 0, rk(M) ≤ 5}

HB
e = CB

m = Ōρ̂t
B

= {M8×8 : TrM = TrM2 = 0,M3 = 0, rk(M) ≤ 4}

HC
e = CC

m = Ōρ̂t
C

= {M8×8 : TrM = TrM2 = 0,M3 = 0, rk(M) ≤ 2}

where rk(M) ≤ n
(`=1)
3 is the rank of the ‘meson’ matrix M.



Global symmetry organizes chiral operators

The global ‘flavour’ symmetry of HA,B,C
e is SU(8).

In magnetic description, A7 formed by balanced nodes.
Chiral operator content up to ∆ = r = 2

Z(µi , t1) = 1 + µ1µ7t2
1 + (µ2

1µ
2
7 + µ2µ6 + µ1µ7)t4

1 + ...

with µi , i = 1, ..., 7 SU(8) fugacities, t1(2) SU(2)H(C) fugacities
Other branches: U(1)×U(2)/U(1)'SU(2)×U(1) global symmetry

A : 1 + (µ2 + 1)t2
2 + µ(α + α−1)t3

2 + (µ4 + µ2 + 1)t4
2

B : 1 + (µ2 + 1)t2
2 + (µ4 + µ2 + 1)t4

2 + µ(α + α−1)t4
2

C : 1 + (µ2 + 1)t2
2 + (µ4 + µ2 + 1)t4

2

N = 2 super-conformal manifold: all combinations of chiral
operators with ∆ = r = 2, then quotient by global symmetry
SU(8)× SU(2)× U(1)× U(1)F (68 generators).
Even neglecting ‘mixed’ branches, get a formidable number!!!



Counting super-marginal deformations

Counting by means of plethystic techniques: Hilbert series,
Molien-Weyl integrals, ... see e.g. [Benvenuti, Hanany; Feng, He; ...]

Relevant integral for (the most interesting) theory B∮
dz

z

∮
dw

w

∫
dµSU(8)dµSU(2)Z

with dµG Haar measure, z (w) fugacity for U(1)F (U(1)
‘magnetic’) and

Z = PE{([2, 0, 0, 0, 0, 0, 2; 0]+[0, 1, 0, 0, 0, 1, 0; 0]+[1, 0, 0, 0, 0, 0, 1; 0])z2q2

+([~0; 4] + [~0; 2] + [~0; 1](w + w−1) + [~0; 0])z−2q2 + [1, 0, 0, 0, 0, 0, 1; 2]q2}

[n1, . . . , n7; n] denotes character of SU(8)× SU(2) irrep with given
Dynkin labels and PE[f (t)] = exp

∑∞
n=1[f (tn)− f (0)]/n



Conclusions and Outlook

I Moduli stabilisation (in AdS4) may present some surprises

I Test of the holographic duality between AdS4 × S2
L × S2

R ×w Σ
and linear N = 4 quivers in D = 3 for Σ an infinite strip

I Holographic description of N = 2 super-conformal manifold

Ms−c = {W(+2)
2 }/G C and supersymmetric petite bouffe

I Embedding into N = 4, identification of ∆ = r = 2 chiral
operators, global symmetry e.g. SU(8)×SU(2)×U(1)×U(1)F

and counting with plethystic techniques

I Find holographic duals of ‘deformed’ quivers

I Generalize to circular quivers i.e. Σ = annulus ...

if it were a
Möbius-strip Y for Yassen would surely be relevant



Conclusions and Outlook

I Moduli stabilisation (in AdS4) may present some surprises

I Test of the holographic duality between AdS4 × S2
L × S2

R ×w Σ
and linear N = 4 quivers in D = 3 for Σ an infinite strip

I Holographic description of N = 2 super-conformal manifold

Ms−c = {W(+2)
2 }/G C and supersymmetric petite bouffe

I Embedding into N = 4, identification of ∆ = r = 2 chiral
operators, global symmetry e.g. SU(8)×SU(2)×U(1)×U(1)F

and counting with plethystic techniques

I Find holographic duals of ‘deformed’ quivers

I Generalize to circular quivers i.e. Σ = annulus ... if it were a
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