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Motivations 1
• asymptotically-free gauge theories (IR strong)

various（low-enrgy）phases
confinement, Higgs, Coulomb and etc… 

Today

• Phases depend on:

temperature, space-time dimensions, matter 
contents Nf (Number of flavors), representations 
of matters:  

gauge groups:  (S)U, (S)O, USp, Spin, Pin, 
Exceptionals…



Motivations 2
• To study strongly-coupled or non-perturbative 
regime with power of SUSY (holomorphy) → 
analytically extract  exact results!! 

• Recent developments about 3d theories

3d & 4d physics are similar, but in some sense “3d” is more richer.

Chern-Simons terms, non-trivial U(1) dynamics and bosonization



Motivations 3
• Many 3d dualities were found now: Seiberg-like, 
CS-type, non-SUSY (bosonization) 

• Check of the 3d dualities/ analysis of the low-
energy physics → (mapping of) monopole 
operators (Coulomb branch operators) 

• difficult … → power of supersymmetry



Today’s topic
• 3d N=2 SUSY Spin(7) theories and their low-
energy dynamics, especially “confinement” 

• First non-trivial case of Spin(N) 

• vector & spinorial representations 

• 3d/4d relation



Plan of the talk

1. Introduction to 3d N=2 SUSY gauge theories  

2. Spin(7) analysis in 3d 

3. Some checks of our analysis (3d/4d)



3d N=2 SUSY  
gauge theories

[Aharony-Hanany-Intriligator-Seiberg-Strassler ’97]



3d gauge theories
• 3d gauge coupling is super-renormalizable and relevant.

3d U(1) dynamics is also “IR strong” and non-trivial. 
ex.  3d “compact” U(1) QED shows confinement and 

chiral symmetry breaking. 
Along the Coulomb branch, we have U(1) gauge theories 

which are still non-trivial.

[g2] = M

in

ĝ2 :=
g2

E
�

E � 0



This gives us flat directions (Higgs branch of the moduli space).

�(x, �) = � + �� + �2F + · · ·

complex scalar fermion

auxiliary field
Chiral Superfield

3d N=2 theories
• 3d UV Lagrangian = simple dimensional reduction of 4d N=1 SUSY

[Aharony-Hanany-Intriligator-Seiberg-Strassler ’97]
[de Boer-Hori-Oz ’97]

S(x, �)

Q(x, �)

: 8 dimensional spinor rep. in Spin(7)

: 7 dimensional vector rep. in Spin(7)

Spin(7) cases

MSS := SS

MQQ := QQ

We need various gauge invariants. 

...



3d N=2 theories

adjoint scalars (Coulomb branch of moduli)

V (x, �, �̄) = ��µ�̄Aµ + ��3�̄A3 + (gaugino) + · · · µ = 0, 1, 2

two real scalars 
                       = one complex scalar

Vi = exp(�i + iai) (i = 1, · · · , r)

non-trivial U(1) dynamics

� := A3

�µa := �µ��F
��

G �� U(1)r�A3� �= 0

• 3d photon is dual to a scalar

Classically, there are r=rank G CB coordinates. �adj = �iHi

Vector superfield
[Aharony-Hanany-Intriligator-Seiberg-Strassler ’97]

[de Boer-Hori-Oz ’97]



Low-energy dynamics

• (quantum) flat directions (massless modes) ? 

• Non-perturbative effects ? 

• Exact superpotential ? 

• Correct Coulomb branch operators (monopole operators) ?

L =

�
d4��̄eV � +

�
d2�W�W� + h.c.

Matter action gauge action

There are two branches of moduli space: Higgs (meson, baryon) & Coulomb 
Their interactions, low-energy superpotential for these massless modes?

Classical vs Quantum pictures?

UV Lagrangian

Leff =

�
d2� Weff (�)



Monopoles
• Along the Coulomb branch, we have a compact U(1). 

• Theory admits monopoles (in 3d, these are instantons)

Spin(7) � U(1)3

3 fundamental monopoles

• Monopole generates non-perturbative effects and 
modifies the classical Coulomb branch drastically.

• 3-dimensional classical Coulomb branch 



Monopole effects
Monopole(instanton) looks like a vertex for fermions.

L �
�

d2� Wsuperpotential � �̄��#

If the monopole-vertex has two fermions, the non-
perturbative effects appear in the superpotential.

Mono
pole

�

��

�

� �2�2e�Son-shell



Fate of Coulomb branch in pure SYM  

Without matter, only gaugino contributes.

W =
�

i

1

Yi

6.1 Monopole operators

Nα1
Adj. = 2 (6.1)

Nα1
✷ = 0 (6.2)

Nα1
S = 1 + sign(φ1 − φ3) = 1 + sign(σ1 − (σ2 + σ3)) (6.3)

Nα2
Adj. = 2 (6.4)

Nα2
✷ = 0 (6.5)

Nα2
S = 0 (6.6)

Nα3
Adj. = 2 (6.7)

Nα3
✷ = 2 (6.8)

Nα3
S = 1− sign(φ1 − φ3) = 1− sign(σ1 − (σ2 + σ3)) (6.9)

Table 10: Fermion-zeromodes

CB operator gaugino spinor

Y1 = exp[σ1 − σ2] 2 1 + sign(σ1 − σ2 − σ3)

Y2 = exp[σ2 − σ3] 2 0

Y3 = exp[2σ3] 2 1− sign(σ1 − σ2 − σ3)
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: Adjoint scalars  �i

All the flat directions are lifted (no SUSY vacuum).

Fermion zero-modes from gauginos

Spin(7) has rank 3. Its CB is classically 3-dimensional.
Y1, Y2, Y3

• Branching rules

Spin(7) −→ SU(4) (5.14)

7 −→ 1+ 6 (5.15)

8 −→ 4+ 4 (5.16)

21 −→ 6+ 15 (5.17)

Spin(7) −→ SU(2)× SU(2)× SU(2) (5.18)

7 −→ (1,1,3) + (2,2,1) (5.19)

8 −→ (1,2,2) + (2,1,2) (5.20)

21 −→ (1,1,3) + (1,3,1) + (3,1,1) + (2,2,3) (5.21)

Spin(7) −→ Sp(4)× U(1) (5.22)

7 −→ 12 + 1−2 + 50 (5.23)

8 −→ 41 + 4−1 (5.24)

Spin(7) −→ G2 (5.25)

7 −→ 7 (5.26)

8 −→ 1+ 7 (5.27)

21 −→ 7+ 14 (5.28)

Spin(7) −→ Spin(3)× U(2) (5.29)

7 −→ (3, ·0) + (·,2±1) (5.30)

8 −→ (2,20) + (2,1±1) (5.31)

Spin(7) −→ Spin(5)× Spin(2) ≃ Spin(5)× U(1) (5.32)

7 −→ 50 + 12 + 1−2 (5.33)

8 −→ 41 + 4−1 (5.34)

The monopole operators are

Y1 ≃ exp[2φ1 − φ2] = exp[σ1 − σ2] (5.35)

Y2 ≃ exp[−φ1 + 2φ2 − 2φ3] = exp[σ2 − σ3] (5.36)

Y3 ≃ exp[−2φ2 + 4φ3] = exp[2σ3] (5.37)

Z := Y1Y
2
2 Y3 ≃ exp[φ2] = exp[σ1 + σ2] (5.38)

Y :=
√
Y1Z ≃ exp[φ1] = exp[σ1] (5.39)

Spin(7) −−−−−→ U(1)3 (5.40)

5.2 4d N = 1 Spin(7) gauge theories

• A center symmetry: Z2.

26



3d Spin(7) with spinor matters
• Fermion zero-modes

6.1 Monopole operators
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• Weight system for a vector representation:

1 0 0

− 1 1 0

0 − 1 2

0 0 0

0 1 − 2

1 − 1 0

− 1 0 0

(5.3)

• Weight system for a spinor representation:

0 0 1

0 1 − 1

1 − 1 1

− 1 0 1 1 0 − 1

− 1 1 − 1

0 − 1 1

0 0 − 1

(5.4)

• Weyl chamber:

2φ1 − φ2 ≥ 0 (5.5)

−φ1 + 2φ2 − 2φ3 ≥ 0 (5.6)

−φ2 + 2φ3 ≥ 0 (5.7)

From these inequalities, we find

2φ1 ≥ φ2 ≥ φ1 ≥ 0 (5.8)

2φ2 − φ1 ≥ 2φ3 ≥ φ2 (5.9)

For defining the Coulomb branch operators in 3d, it is convenient to redefine the

coordinates as

φ1 = σ1 (5.10)

φ2 = σ1 + σ2 (5.11)

φ3 =
1

2
(σ1 + σ2 + σ3) (5.12)

and the Weyl chamber is simplified

σ1 ≥ σ2 ≥ σ3 ≥ 0 (5.13)

25Y2 is lifted. Y1 (or Y3) is lifted depending on the sign. 

Globally, we need one coordinate for the Coulomb branch.

• Branching rules

Spin(7) −→ SU(4) (5.14)
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8 −→ 4+ 4 (5.16)
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Z := Y1Y
2
2 Y3For all the regions, the quantum CB is described by

W =
1

Y2
+

�
1
Y3

(�1 > �2 + �3)
1
Y1

(�1 < �2 + �3)

� exp[�1 + �2]



Exact superpotentials: Spin(7) with Ns spinors

4 3d N = 2 Spin(7) theories with spinorial matters

In a previous section, we studied the (semi-)classical Coulomb branch of the Spin(7) theory.

Here we examine the quantum aspects of the Spin(7) Coulomb branch. Let us start with the

3d N = 2 Spin(7) gauge theory with spinorial matters. The Higgs branch is parametrized

by a meson MSS := SS for NS ≤ 3. The baryonic operator BS := S4 is also necessary for

NS ≥ 4. The matter contents and their quantum numbers are summarized in Table 3. The

table also includes the dynamical scale η of the 4d gauge coupling. Since the U(1) symmetries

are anomalous in 4d due to the chiral anomalies, the dynamical scale is charged under the

U(1) symmetries. For the Coulomb branch, we predict that Z is a correct monopole operator.

Table 3: Quantum numbers for 3d N = 2 Spin(7) with NS spinors

Spin(7) SU(NS) U(1)S U(1)R
S 2N = 8 1 RS

λ Adj. 1 0 1

η = Λb
Nf ,NS

1 1 2NS 2NS(RS − 1) + 10

MSS := SS 1 2 2RS

BS := S4 1 4 4RS

Y1 1 1 −NS(1 + sign(φ1 − φ3)) −2−NS(RS − 1)(1 + sign(φ1 − φ3))

Y2 1 1 0 −2

Y3 1 1 −NS(1− sign(φ1 − φ3)) −2−NS(RS − 1)(1− sign(φ1 − φ3))

Z := Y1Y 2
2 Y3 1 1 −2NS −8− 2NS(RS − 1)

For any NS, the superpotentialW = ηZ is available, which is dynamically generated from

the KK-monopole and necessary when connecting the 3d theory to the 4d theory. From Table

3, we find that the following superpotentials are consistent with all the symmetries.

WNS≤3 =

(
1

Z detMSS

) 1
4−NS

(4.1)

WNS=4 = X
[
Z(detMSS − B2

S)− 1
]

(4.2)

WNS=5 = Z
(
det MSS − Bi

SB
j
SMSS,ij

)
(4.3)

Consequently, there is no stable SUSY vacuum forNS ≤ 3. The Higgs and Coulomb branches

are quantum-mechanically merged for NS = 4. The large values of the Higgs branch is

connected to the small value of the Coulomb branch. Importantly the origin of the moduli

space is not a vacuum. For NS = 5, the theory is s-confining, where the origin belongs to

the vacua. For NS ≥ 6 we have no simple superpotential. In what follows, we will verify our

superpotentials above in various ways. It is easy to check the parity anomaly matching for

NS = 5. The UV and IR descriptions produce the same anomalies. By adding the term ηZ

8

6.2 Nf = 0: purely spinorial theories

Table 12: Quantum numbers for 3d N = 2 Spin(7) with Nf spinors

Spin(7) SU(NS) U(1)S U(1)R
S 2N = 8 1 RS

λ Adj. 1 0 1

MSS := SS 1 2 2RS

BS := S4 1 4 4RS

Z := Y1Y 2
2 Y3 1 1 −2NS −8− 2NS(RS − 1)

Table 13: Quantum numbers for 3d N = 2 Spin(7) with Nf spinors

Spin(7) SU(NS) U(1)S U(1)R
S 2N = 8 1 RS

λ Adj. 1 0 1

η = Λb
Nf ,NS

1 1 2NS 2NS(RS − 1) + 10

MSS := SS 1 2 2RS

BS := S4 1 4 4RS

det MSS 1 1 2NS 2NSRS

Y1 1 1 −NS(1 + sign(φ1 − φ3)) −2−NS(RS − 1)(1 + sign(φ1 − φ3))

Y2 1 1 0 −2
Y3 1 1 −NS(1− sign(φ1 − φ3)) −2−NS(RS − 1)(1− sign(φ1 − φ3))

Z := Y1Y 2
2 Y3 1 1 −2NS −8− 2NS(RS − 1)

Yspin := Y 2
1 Y

2
2 Y3 (φ1 ≥ φ3) 1 1 −4NS −10− 4NS(RS − 1)

Y :=
√
Y1Z (φ1 ≥ φ3) 1 1 −2NS −5− 2NS(RS − 1)

Y ′
spin := Y 2

1 Y
2
2 Y3 (φ1 < φ3) 1 1 −2NS −10− 2NS(RS − 1)

Y ′ :=
√
Y ′
spin (φ1 < φ3) 1 1 −NS −5−NS(RS − 1)

Z ′ := Y1Y3 1 1 −2NS −4− 2NS(RS − 1)

Z ′′ := Y1Y2Y3 1 1 −2NS −6− 2NS(RS − 1)

From the above table, we find that the following superpotential is consistent with all the

symmetries.

WNf=0,NS≤3 =

(
1

Z detMSS

) 1
4−NS

(6.14)

WNf=0,NS=4 = X
[
Z(detMSS − B2

S)− 1
]

(6.15)

WNf=0,NS=5 = Z
(
det MSS − Bi

SB
j
SMSS,ij

)
(6.16)

This is consistent with the corresponding 4d results, but this does not confirm the validity

of our analysis.

31

Matter contents

Higgs branch coordinates

Coulomb branch

X: Lagrange multiplier

Matter contents and moduli coordinates



Runaway potential (no SUSY vacuum)

4 3d N = 2 Spin(7) theories with spinorial matters
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NS ≥ 4. The matter contents and their quantum numbers are summarized in Table 3. The

table also includes the dynamical scale η of the 4d gauge coupling. Since the U(1) symmetries

are anomalous in 4d due to the chiral anomalies, the dynamical scale is charged under the

U(1) symmetries. For the Coulomb branch, we predict that Z is a correct monopole operator.
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Y3 1 1 −NS(1− sign(φ1 − φ3)) −2−NS(RS − 1)(1− sign(φ1 − φ3))

Z := Y1Y 2
2 Y3 1 1 −2NS −8− 2NS(RS − 1)

For any NS, the superpotentialW = ηZ is available, which is dynamically generated from

the KK-monopole and necessary when connecting the 3d theory to the 4d theory. From Table

3, we find that the following superpotentials are consistent with all the symmetries.

WNS≤3 =

(
1
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(4.1)

WNS=4 = X
[
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]

(4.2)
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(
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j
SMSS,ij

)
(4.3)

Consequently, there is no stable SUSY vacuum forNS ≤ 3. The Higgs and Coulomb branches

are quantum-mechanically merged for NS = 4. The large values of the Higgs branch is

connected to the small value of the Coulomb branch. Importantly the origin of the moduli

space is not a vacuum. For NS = 5, the theory is s-confining, where the origin belongs to

the vacua. For NS ≥ 6 we have no simple superpotential. In what follows, we will verify our

superpotentials above in various ways. It is easy to check the parity anomaly matching for

NS = 5. The UV and IR descriptions produce the same anomalies. By adding the term ηZ
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Z(det MSS � B2
S) = 1

Large vev of CB corresponds to small vevs of HB. 
moduli space is highly deformed.
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8

S-confinement:  
meson M, baryon B and a single gauge singlet Z

Exact superpotentials: Spin(7) with Ns spinors

At the origin of moduli space, there is no symmetry 
breaking.



Nf vectors and Ns spinors
• Spin(7) allows vector and spinor representations. These zero-modes are

theories with vectorial matters. By using the Callias index theorem, one can compute the

fermion zero-modes around each magnetic monopole. Table 2 summarizes the fermion zero-

modes for each operator. Notice that we have to divide the Weyl chamber further into two

regions depending on the sign of φ1 − φ3 for the spinor zero-modes.

Table 2: Fermion zero-modes

adjoint vector spinor

Y1 2 0 1 + sign(φ1 − φ3)

Y2 2 0 0

Y3 2 2 1− sign(φ1 − φ3)

Z := Y1Y 2
2 Y3 8 2 2

Y :=
√
Y1Z (φ1 > φ3) 5 1 2

Yspin := Y1Z (φ1 > φ3) 10 2 4

For the 3dN = 2 pure Spin(7) theory without matters, all the Coulomb branch operators

Yi get two gaugino zero-modes. Thus we have the non-perturbative superpotential like 1
Yi

and there is no stable SUSY vacuum.

When we turn on the matters in a vectorial representation, Y3 gets additional zero-

modes from the vectorial fermions and W = 1
Y3

is not allowed. As a result, one dimensional

Coulomb branch would remain as the (quantum) moduli space. For an (S)O(7) case with

vector matters [17], Y is a globally defined one-dimensional Coulomb branch operator. For a

Spin(7) theory with vectorial matters the correct coordinate is Yspin [16]. In these theories,

Z appears when we put the corresponding 4d theories on a circle.

Let us next consider the Spin(7) theory with spinorial matters. For φ1 > φ3, Y1 has

zero-modes from the spinor in addition to the gaugino zero-modes. Thus, it is expected that

Y1 is not lifted and that there is a one-dimensional Coulomb branch for φ1 > φ3. The same

argument would be available also for φ1 < φ3 and Y3 is un-lifted. In this theory, we need

one globally defined coordinate and we will use Z for parametrizing it.

When both the vectors and the spinors are added into the Spin(7) theory, the Coulomb

branch becomes more complicated. For φ1 > φ3, Y1 and Y3 have more than two fermion zero-

modes. Hence they are not lifted while Y2 is still lifted via the monopole superpotential. For

φ1 < φ3, only Y3 has more than two zero-modes and Y1,2 are lifted. We therefore need to

introduce two coordinates for the description of the (semi-)classical Coulomb moduli. We

expect that one of them would be the operator Z. This is because the zero-mode of Z

does not depend on the sign of φ1 − φ3 so that Z would be globally defined on the whole

Coulomb branch. The other one would be described by Y or Yspin. Notice that this analysis

is completely (semi-)classical. Therefore the quantum effects might modify these pictures.

In fact we will see that the 3d N = 2 Spin(7) gauge theories with Nf vectors and NS spinors

sometimes show the one-dimensional Coulomb branch.

7

Y2 is still lifted while Y3 is not. Y1 depends on the sign. 

One can generally expect two-dimensional CB.

Z := Y1Y
2
2 Y3

Yspin := Y 2
1 Y 2

2 Y3 (�1 > �3)

W =
1

Y2
+

�
0 (�1 > �3)
1
Y1

(�1 < �3)

[Aharony-Razamat-Seiberg-Willett ’13]



S-confinement for (Nf, Ns)

(Nf, Ns) = (0, 5), (1, 4), (2, 3), (3, 2), (4, 1), (6, 0)
We find s-confinement phases for 

Today



3 vectors & 2 spinors
Table 18: Quantum numbers for (Nf , NS) = (3, 2)

Spin(7) SU(3) SU(2) U(1)Q U(1)S U(1)R
Q 1 1 0 Rf

S 2N = 8 1 0 1 RS

λ Adj. 1 1 0 0 1

MQQ := QQ 1 1 2 0 2Rf

MSS := SS 1 1 0 2 2RS

PS,3 := SQ3S 1 1 3 2 3Rf + 2RS

PA,1 := SQS 1 1 1 2 Rf + 2RS

PA,2 := SQ2S 1 ¯ 1 2 2 2Rf + 2RS

Z := Y1Y 2
2 Y3 1 1 1 −6 −4 −8− 6(Rf − 1)− 4(RS − 1)

Yspin for φ1 ≥ φ3 1 1 1 −3 −4 −5− 3(Rf − 1)− 4(RS − 1) = 2− 3Rf − 4RS

Table 19: Quantum numbers for (Nf , NS) = (3, 2)

Spin(7) SU(3) SU(2) U(1)Q U(1)S U(1)R
Q 1 1 0 Rf

S 2N = 8 1 0 1 RS

λ Adj. 1 1 0 0 1

η = Λb
Nf ,NS

1 1 1 2Nf 2NS 6(Rf − 1) + 4(RS − 1) + 10

MQQ := QQ 1 1 2 0 2Rf

MSS := SS 1 1 0 2 2RS

PS,3 := SQ3S 1 1 3 2 3Rf + 2RS

PA,1 := SQS 1 1 1 2 Rf + 2RS

PA,2 := SQ2S 1 ¯ 1 2 2 2Rf + 2RS

det MQQ 1 1 1 6 0 6Rf

det MSS 1 1 1 0 4 4RS

det PS,3 1 1 1 6 4 6Rf + 4RS

MSSPS,3 1 1 1 3 4 3Rf + 4RS

PA,1PA,2 1 1 1 3 4 3Rf + 4RS

P 2
A,2MQQ 1 1 1 6 4 6Rf + 4RS

P 2
A,1M

2
QQ 1 1 1 6 4 6Rf + 4RS

η 1 1 1 6 4 6(Rf − 1) + 4(RS − 1) + 10

Y1 1 1 1 0 −NS(1 + sign(φ1 − φ3)) −2−NS(RS − 1)(1 + sign(φ1 − φ2))

Y2 1 1 1 0 0 −2
Y3 1 1 1 −2Nf −NS(1− sign(φ1 − φ3)) −2−NS(RS − 1)(1− sign(φ1 − φ2))− 2Nf (Rf − 1)

Z := Y1Y 2
2 Y3 1 1 1 −6 −4 −8− 6(Rf − 1)− 4(RS − 1)

Y :=
√
Y1Z for φ1 ≥ φ3 1 1 1 −3 −4 −5− 3(Rf − 1)− 4(RS − 1) = 2− 3Rf − 4RS

Z ′ := Y1Y3 1 1 1 −2Nf −2NS −4− 2NS(RS − 1)− 2Nf (Rf − 1)

Z ′′ := Y1Y2Y3 1 1 1 −2Nf −2NS −6− 2NS(RS − 1)− 2Nf (Rf − 1)

Yspin := Y 2
1 Y

2
2 Y3 = Y 2 1 1 1 −6 −8 −10− 6(Rf − 1)− 8(RS − 1) = 4− 6Rf − 8RS
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Yspin for φ1 ≥ φ3 1 1 1 −3 −4 −5− 3(Rf − 1)− 4(RS − 1) = 2− 3Rf − 4RS

W = Z

(
det MQQ det MSS − det PS,3 + P 2

A,2MQQ −
1

2
P 2
A,1M

2
QQ

)

+ Yspin (PA,1PA,2 −MSSPS,3) (6.72)
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matter contents

Higgs branch 
coordinates

The theory is s-confining and described by gauge singlets and the following 
superpotential. 

Spin(7) 
(Nf,Ns)=(3,2) dual

Non-gauge theory with 
 MQQ, MSS , PS3, PA1, PA2, Z and Yspin



Vectors and one spinor:（Nf, Ns）=（4, 1）

• Semi-classically, two Coulomb branch operators are necessary: Z & Y 

• But we find a quantum identification between them:

Z � YspinMSS

the quantum Coulomb branch is one-dimensional. The superpotential consistent with all the

symmetries takes

W = Yspin[M
2
SS det MQQ + P 2MQQ −R2] + ηYspinMSS, (5.54)

where the term proportional to η is generated by a KK-monopole and absent in a 3d limit.

Originally the KK-monopole contribution is ηZ but now it is expressed in terms of Yspin. We

can easily check the parity anomaly matching between the UV theory and the IR description

(5.54). One might consider that the quantum Coulomb branch is described by Y instead of

Yspin. However, in this case, we cannot satisfy the parity anomaly matching for kU(1)RU(1)R .

By integrating out the Coulomb branch Yspin, we reproduce the 4d result with a single

quantum constraint [5]

M2
SS det MQQ + P 2MQQ −R2 + ηMSS = 0. (5.55)

Therefore, the identification, Z ∼ YspinMSS, properly reduces the 3d result to the 4d con-

straint. Let us check the complex mass deformation for the spinorial matter, which leads to

the 3d N = 2 Spin(7) gauge theory with four vector matters. The superpotential becomes

W = Yspin[M
2
SS det MQQ + P 2MQQ −R2] +mMSS (5.56)

and the equations of motion for MSS, P and R are

m+ 2YspinMSS detMQQ = 0, (5.57)

YspinPMQQ = 0, (5.58)

RYspin = 0, (5.59)

which lead to P i = R = 0 and MSS is integrated out. The low-energy superpotential results

in

W =
1

Yspin detMQQ
. (5.60)

This is consistent with the observation in [17] with modification of the Coulomb branch

operator. This difference is due to the fact that we deal with not an SO(7) group but a

Spin(7) group.

Next, we will test the Higgs branch. When the spinor gets a vev ⟨MSS⟩ = v2, the

gauge group is broken to G2. The low-energy limit becomes a 3d N = 2 G2 gauge theory

with four fundamentals from the vector matters. Under the breaking we have the following

identification between the Spin(7) and G2 theories

P i =: v2Bi
G2
, R =: vFG2 , Yspinv

2 =: ZG2 . (5.61)

The superpotential reduces to

W = ZG2

[
detMQQ − F 2 +BMQQB

]
, (5.62)
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Table 19: Quantum numbers for (Nf , NS) = (4, 1)

Spin(7) SU(4)Q U(1)Q U(1)S U(1)R
Q 7 1 0 Rf

S 8 1 0 1 RS

η = Λb
Nf ,NS

1 1 2Nf 2NS 2Nf (Rf − 1) + 2NS(RS − 1) + 10

MQQ := QQ 1 2 0 2Rf

MSS := SS 1 1 0 2 2RS

P := SQ3S 1 ¯ 3 2 3Rf + 2RS

R := SQ4S 1 1 4 2 4Rf + 2RS

Z := Y1Y 2
2 Y3 1 1 −8 −2 −8− 2(RS − 1)− 8(Rf − 1) = 2− 8Rf − 2RS

Yspin := Y 2
1 Y

2
2 Y3 1 1 −8 −4 −10− 8(Rf − 1)− 4(RS − 1)

Table 20: Quantum numbers for (Nf , NS) = (4, 1)

SU(4)Q U(1)Q U(1)S U(1)R
MQQ := QQ 2 0 2Rf

MSS := SS 1 0 2 2RS

P := SQ3S ¯ 3 2 3Rf + 2RS

R := SQ4S 1 4 2 4Rf + 2RS

Yspin := Y 2
1 Y

2
2 Y3 1 −8 −4 −10− 8(Rf − 1)− 4(RS − 1)

Table 21: Quantum numbers for (Nf , NS) = (4, 1)

SU(4)Q U(1)Q U(1)S U(1)R
η = Λb

Nf ,NS
1 2Nf 2NS 2Nf (Rf − 1) + 2NS(RS − 1) + 10

MQQ := QQ 2 0 2Rf

MSS := SS 1 0 2 2RS

P := SQ3S ¯ 3 2 3Rf + 2RS

R := SQ4S 1 4 2 4Rf + 2RS

det MQQ 1 8 0 8Rf

PMQQP 1 8 4 8Rf + 4RS

MSS := SS 1 0 2 2RS

η 1 8 2 8(Rf − 1) + 2(RS − 1) + 10

Y1 1 0 −(1 + sign(φ1 − φ3)) −2− (RS − 1)(1 + sign(φ1 − φ3))

Y2 1 0 0 −2
Y3 1 −8 −(1− sign(φ1 − φ3)) −2− (RS − 1)(1− sign(φ1 − φ3))− 8(Rf − 1)

Z := Y1Y 2
2 Y3 1 −8 −2 −8− 2(RS − 1)− 8(Rf − 1) = 2− 8Rf − 2RS

Y :=
√
Y1Z for φ1 ≥ φ3 1 −4 −2 −5− 4(Rf − 1)− 2(RS − 1) = 1− 4Rf − 2RS

Yspin := Y 2
1 Y

2
2 Y3 = Y 2 1 −8 −4 −10− 8(Rf − 1)− 4(RS − 1)

Z ′ := Y1Y3 1 −8 −2 −4− 2(RS − 1)− 8(Rf − 1)

Z ′′ := Y1Y2Y3 1 −8 −2 −6− 2(RS − 1)− 8(Rf − 1)
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gauge invariants of 
the Higgs branch

matter contents



Consistency checks
• Coincide with semi-classical analysis of the moduli 
space: okay 

• Up lift to 4d N=1 SUSY gauge theories 

• Flow to 3d N=2 G2/SU(3)/Spin(N < 7) gauge 
theories: okay 

• Parity anomaly matching: okay 

• Superconformal indices: consistent on both sides

I will show this



3d and 4d relation
• In 4d, there is a chiral anomaly, but not for 3d. 

• Additional U(1) symmetry in 3d 

• In order to connect 3d and 4d, we need to introduce effects 
breaking the U(1) symmetry. 

• On S1 x R3, additional instantons (known as KK-monopole or 
twisted instanton) should be included. 

• KK-monopole only contains 2 gaugino zero-modes, which leads 
to

�W = �Z



Back to the 4d
Up lift into 4d

CBs should be integrated out since they are gauge fields. 
One must include effects from S1 x R3 (KK-monopole).

�W = �Z

4 3d N = 2 Spin(7) theories with spinorial matters

In a previous section, we studied the (semi-)classical Coulomb branch of the Spin(7) theory.

Here we examine the quantum aspects of the Spin(7) Coulomb branch. Let us start with the

3d N = 2 Spin(7) gauge theory with spinorial matters. The Higgs branch is parametrized

by a meson MSS := SS for NS ≤ 3. The baryonic operator BS := S4 is also necessary for

NS ≥ 4. The matter contents and their quantum numbers are summarized in Table 3. The

table also includes the dynamical scale η of the 4d gauge coupling. Since the U(1) symmetries

are anomalous in 4d due to the chiral anomalies, the dynamical scale is charged under the

U(1) symmetries. For the Coulomb branch, we predict that Z is a correct monopole operator.

Table 3: Quantum numbers for 3d N = 2 Spin(7) with NS spinors

Spin(7) SU(NS) U(1)S U(1)R
S 2N = 8 1 RS

λ Adj. 1 0 1

η = Λb
Nf ,NS

1 1 2NS 2NS(RS − 1) + 10

MSS := SS 1 2 2RS

BS := S4 1 4 4RS

Y1 1 1 −NS(1 + sign(φ1 − φ3)) −2−NS(RS − 1)(1 + sign(φ1 − φ3))

Y2 1 1 0 −2

Y3 1 1 −NS(1− sign(φ1 − φ3)) −2−NS(RS − 1)(1− sign(φ1 − φ3))

Z := Y1Y 2
2 Y3 1 1 −2NS −8− 2NS(RS − 1)

For any NS, the superpotentialW = ηZ is available, which is dynamically generated from

the KK-monopole and necessary when connecting the 3d theory to the 4d theory. From Table

3, we find that the following superpotentials are consistent with all the symmetries.

WNS≤3 =

(
1

Z detMSS

) 1
4−NS

(4.1)

WNS=4 = X
[
Z(detMSS − B2

S)− 1
]

(4.2)

WNS=5 = Z
(
det MSS − Bi

SB
j
SMSS,ij

)
(4.3)

Consequently, there is no stable SUSY vacuum forNS ≤ 3. The Higgs and Coulomb branches

are quantum-mechanically merged for NS = 4. The large values of the Higgs branch is

connected to the small value of the Coulomb branch. Importantly the origin of the moduli

space is not a vacuum. For NS = 5, the theory is s-confining, where the origin belongs to

the vacua. For NS ≥ 6 we have no simple superpotential. In what follows, we will verify our

superpotentials above in various ways. It is easy to check the parity anomaly matching for

NS = 5. The UV and IR descriptions produce the same anomalies. By adding the term ηZ

8

+�Z

Integrating out Z
det MSS � B2

SMSS + � = 0

4d constraint [Pouliot ‘95]
�W

�Z
= 0



3d and 4d relation
Up lift to 4d: (Nf, Ns)=(4, 1) case

CB is integrated out. 
One must include effects from S1 x R3 (KK - monopole)

WS1�R3 = �Z � �YspinMSSthe quantum Coulomb branch is one-dimensional. The superpotential consistent with all the

symmetries takes

W = Yspin[M
2
SS det MQQ + P 2MQQ −R2] + ηYspinMSS, (5.54)

where the term proportional to η is generated by a KK-monopole and absent in a 3d limit.

Originally the KK-monopole contribution is ηZ but now it is expressed in terms of Yspin. We

can easily check the parity anomaly matching between the UV theory and the IR description

(5.54). One might consider that the quantum Coulomb branch is described by Y instead of

Yspin. However, in this case, we cannot satisfy the parity anomaly matching for kU(1)RU(1)R .

By integrating out the Coulomb branch Yspin, we reproduce the 4d result with a single

quantum constraint [5]

M2
SS det MQQ + P 2MQQ −R2 + ηMSS = 0. (5.55)

Therefore, the identification, Z ∼ YspinMSS, properly reduces the 3d result to the 4d con-

straint. Let us check the complex mass deformation for the spinorial matter, which leads to

the 3d N = 2 Spin(7) gauge theory with four vector matters. The superpotential becomes

W = Yspin[M
2
SS det MQQ + P 2MQQ −R2] +mMSS (5.56)

and the equations of motion for MSS, P and R are

m+ 2YspinMSS detMQQ = 0, (5.57)

YspinPMQQ = 0, (5.58)

RYspin = 0, (5.59)

which lead to P i = R = 0 and MSS is integrated out. The low-energy superpotential results

in

W =
1

Yspin detMQQ
. (5.60)

This is consistent with the observation in [17] with modification of the Coulomb branch

operator. This difference is due to the fact that we deal with not an SO(7) group but a

Spin(7) group.

Next, we will test the Higgs branch. When the spinor gets a vev ⟨MSS⟩ = v2, the

gauge group is broken to G2. The low-energy limit becomes a 3d N = 2 G2 gauge theory

with four fundamentals from the vector matters. Under the breaking we have the following

identification between the Spin(7) and G2 theories

P i =: v2Bi
G2
, R =: vFG2 , Yspinv

2 =: ZG2 . (5.61)

The superpotential reduces to

W = ZG2

[
detMQQ − F 2 +BMQQB

]
, (5.62)
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the quantum Coulomb branch is one-dimensional. The superpotential consistent with all the
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2
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where the term proportional to η is generated by a KK-monopole and absent in a 3d limit.
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By integrating out the Coulomb branch Yspin, we reproduce the 4d result with a single
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SS det MQQ + P 2MQQ −R2 + ηMSS = 0. (5.55)

Therefore, the identification, Z ∼ YspinMSS, properly reduces the 3d result to the 4d con-

straint. Let us check the complex mass deformation for the spinorial matter, which leads to

the 3d N = 2 Spin(7) gauge theory with four vector matters. The superpotential becomes

W = Yspin[M
2
SS det MQQ + P 2MQQ −R2] +mMSS (5.56)

and the equations of motion for MSS, P and R are

m+ 2YspinMSS detMQQ = 0, (5.57)

YspinPMQQ = 0, (5.58)

RYspin = 0, (5.59)

which lead to P i = R = 0 and MSS is integrated out. The low-energy superpotential results

in

W =
1

Yspin detMQQ
. (5.60)

This is consistent with the observation in [17] with modification of the Coulomb branch

operator. This difference is due to the fact that we deal with not an SO(7) group but a

Spin(7) group.

Next, we will test the Higgs branch. When the spinor gets a vev ⟨MSS⟩ = v2, the

gauge group is broken to G2. The low-energy limit becomes a 3d N = 2 G2 gauge theory

with four fundamentals from the vector matters. Under the breaking we have the following

identification between the Spin(7) and G2 theories

P i =: v2Bi
G2
, R =: vFG2 , Yspinv

2 =: ZG2 . (5.61)

The superpotential reduces to

W = ZG2

[
detMQQ − F 2 +BMQQB

]
, (5.62)
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Integrating-out Y (4d limit)

: dynamical scale of 4d gauge coupling�

4d quantum constraint
[P. Cho ’97]



Summary & Discussion
• We studied 3d N=2 SUSY Spin(7) gauge theory and found 
some s-confining phases whose CB is 1 or 2 dimensional. 

• The most of the CB is lifted and it depends on the matter 
contents, which could be different from the semiclassical 
picture in general. 

• 3d & 4d are connected via KK-monopole. 

• Spin(N) (7 < N < 15) is possible but not so straightforward.  

• For larger Ns, we expect some Seiberg dual description but now 
not known. The dual would be U(F-4) with symmetric matters.

Thank you for your attention.



“Superconformal Index”
• counting BPS states with weights 

• partition function on S1 x S2

I = Tr
�
(�1)F e��{Q,S}xR+2j3tF

�

scalar BPS state (operator) with R-charge r & global U(1)charge q

xrtq

Fermion number

• We can compute this quantity by employing a localization technique.

spin(3) rotation of S2



SCI in Spin(7) Ns=5

that the Coulomb branch is still one-dimensional (it is labeled by Z) and that the quantum

moduli space would be identical to the (semi-)classical one. If the fractional power in a

superpotential is allowed, one can still write down the “effective” superpotential. ForNS = 6,

the superpotential

WNS=6 =
[
Z
(
detMSS −M2

SSB
2
S − Pf BS

)] 1
2 (4.11)

is consistent with all the symmetries. By adding a term ηZ, the 4d result (2.6) is reproduced.

However, the fractional power leads to the branch-cut singularities on the origin of the moduli

space and we have to introduce new massless degrees of freedom along the singularities.

Presumably, some Seiberg dual descriptions would explain these massless modes and a certain

superconformal fixed point is realized on the origin of the moduli space. We don’t discuss it

further in this paper and will tackle with this problem elsewhere.

4.1 Superconformal Indices

Since the Spin(7) theory with five spinors exhibits the s-confinement phase, the super-

conformal index is simple enough and it is computed from the dual side. This would be

another check of our analysis. For the definitions of the superconformal indices, see for ex-

ample [23–30]. The index on the dual side has the contributions from the meson MSS,ij, the

baryon Bi
S and the Coulomb branch operator Z. We set RS = 1

8 for simplicity and use a

fugacity u for the global U(1)S symmetry which rotates the spinor. The full index (or the

index of the dual description) becomes

INS=5
magnetic = 1 + 15u2x1/4 + 125u4√x+

(
1

u10
+ 755u6

)
x3/4 +

(
3675u8 +

15

u8

)
x+

(
15252u10 +

125

u6

)
x5/4

+

(
1

u20
+ 55880u12 +

750

u4

)
x3/2 + 5

(
37004u14 +

717

u2
+

3

u18

)
x7/4 +

(
562985u16 +

125

u16
+ 14402

)
x2

+

(
1

u30
+ 1594185u18 +

750

u14
+ 50245u2

)
x9/4 +

(
4241879u20 + 155550u4 +

3585

u12
+

15

u28

)
x5/2

+

(
10688125u22 + 433550u6 +

14403

u10
+

125

u26

)
x11/4 +

(
1

u40
+ 25661515u24 +

750

u24
+ 1097955u8 +

50270

u8

)
x3 + · · ·

(4.12)

We will briefly explain the low-lying operators below.

• The first term is an identity operator.

• The second term 15u2x1/4 is identified with a meson contribution MSS,ij which has 15

independent components.

• The third term 125u4
√
x consists of two operators. One is a baryonic operator Bi

S which

contributes to the index as 5u4x1/2 and the other is a square of the mesons MSS⊗MSS,

whose flavor indices are symmetrized. Thus we have 15 × 15|symmetric part = 120 =

50+ 70
′
in an SU(5) notation.
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6.2 Nf = 0: purely spinorial theories

Table 12: Quantum numbers for 3d N = 2 Spin(7) with NS = 5 spinors

SU(5) U(1)S U(1)R
MSS := SS 2 2RS = 1

4

BS := S4 4 4RS = 1
2

Z := Y1Y 2
2 Y3 1 −10 2− 10RS = 3

4

Table 13: Quantum numbers for 3d N = 2 Spin(7) with Nf spinors

Spin(7) SU(NS) U(1)S U(1)R
S 2N = 8 1 RS

λ Adj. 1 0 1

MSS := SS 1 2 2RS

BS := S4 1 4 4RS

Z := Y1Y 2
2 Y3 1 1 −2NS −8− 2NS(RS − 1)

Table 14: Quantum numbers for 3d N = 2 Spin(7) with Nf spinors

Spin(7) SU(NS) U(1)S U(1)R
S 2N = 8 1 RS

λ Adj. 1 0 1

η = Λb
Nf ,NS

1 1 2NS 2NS(RS − 1) + 10

MSS := SS 1 2 2RS

BS := S4 1 4 4RS

det MSS 1 1 2NS 2NSRS

Y1 1 1 −NS(1 + sign(φ1 − φ3)) −2−NS(RS − 1)(1 + sign(φ1 − φ3))

Y2 1 1 0 −2
Y3 1 1 −NS(1− sign(φ1 − φ3)) −2−NS(RS − 1)(1− sign(φ1 − φ3))

Z := Y1Y 2
2 Y3 1 1 −2NS −8− 2NS(RS − 1)

Yspin := Y 2
1 Y

2
2 Y3 (φ1 ≥ φ3) 1 1 −4NS −10− 4NS(RS − 1)

Y :=
√
Y1Z (φ1 ≥ φ3) 1 1 −2NS −5− 2NS(RS − 1)

Y ′
spin := Y 2

1 Y
2
2 Y3 (φ1 < φ3) 1 1 −2NS −10− 2NS(RS − 1)

Y ′ :=
√
Y ′
spin (φ1 < φ3) 1 1 −NS −5−NS(RS − 1)

Z ′ := Y1Y3 1 1 −2NS −4− 2NS(RS − 1)

Z ′′ := Y1Y2Y3 1 1 −2NS −6− 2NS(RS − 1)
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The theory is s-confining.

x3/4

u10

15u2x1/4

5u4x1/2

15 � 15|symmetric = 120
MSS

M2
SS + BS Z ZMSS

One can also derive the same index from MSS , BS , Z

RS =
1

8



SCI in Spin(7) (Nf,Ns)=(4,1)

The theory is dual to a non-gauge theory with MQQ, MSS , P, R

I
(0,0,0)
electric = 1 + x1/3 (t2 + 6u2)+ x2/3 (t4 + 9t2u2 + 21u4)+ 2t2u3x5/6 + x

(
t6 + 9t4u2 + 39t2u4 + 56u6)

+ x7/6 (2t4u3 + 12t2u5)+ x4/3 (t8 + 9t6u2 + 45t4u4 + 119t2u6 + 126u8)+ x3/2 (2t6u3 + 18t4u5 + 42t2u7)

+ x5/3 (t10 + 9t8u2 + 45t6u4 + 157t4u6 + 294t2u8 + 252u10)+ x11/6 (2t8u3 + 18t6u5 + 78t4u7 + 112t2u9)

+ x2 (t12 + 9t10u2 + 45t8u4 + 167t6u6 + 432t4u8 + 630t2u10 + 462u12 − 11
)
+ · · · , (5.68)

I
( 1
2 ,0,0)

electric =
x2/3

t2u6
+ x

(
9

t2u4
+

1

u6

)
+ x4/3

(
t2

u6
+

36

t2u2
+

9

u4

)
+ x5/3

(
t4

u6
+

9t2

u4
+

100

t2
+

36

u2

)

+ x2
(

t6

u6
+

9t4

u4
+

36t2

u2
+

225u2

t2
+ 100

)
+ · · · , (5.69)

I
( 1
2 , 12 ,− 1

2 )
electric =

x1/3

t4u6
+

6x2/3

t4u4
+

21x

t4u2
+

56x4/3

t4
+

126u2x5/3

t4
+

252u4x2

t4
+ · · · . (5.70)

The sector with zero GNO charge contains the Higgs branch operators. The second term

x1/3 (t2 + 6u2) represents the mesons M0 and T . The third term x2/3 (t4 + 9t2u2 + 21u4)

contains M2
0 , T

2,M0T and M2. The fourth term corresponds to the baryonic operators B

and B̄. The sector with a GNO charge
(
1
2 , 0, 0

)
classically represents the Coulomb branch

operator Y as x2/3

t2u6 , which is not a quantum Coulomb branch operator. In this sector,

the gauge group is broken to SU(2) × U(1) × U(1). Therefore, the BPS scalar states are

YM0 and Y A2 where M0 and A2 are constructed from the fields not interacting with the

monopole background. Hence Y A2 contains the nine contributions 9x
t2u4 while T := A2 has six

components. Quantum mechanically, these nine contributions are decomposed into Ŷ M0T

and Ŷ M2. This observation is very consistent with our prediction Y ∼ Ŷ M0. The sector

with a GNO charge
(
1
2 ,

1
2 ,−

1
2

)
contains the genuine Coulomb branch operator Ŷ as x1/3

t4u6 and

this is consistent with Table 10. Since the gauge group is broken to SU(2)× SU(2)× U(1)

in this sector, we cannot take a product between Ŷ and the (anti-)fundamental fields which

are all charged under the U(1). Therefore the proceeding terms are identified with Ŷ T n. By

summing up all the other sectors contributing to the lower orders in the index we reproduce

the full index (5.67).

Superconformal Indices of Spin(7) with (Nf , Nc) = (4, 1)

We also discuss the superconformal indices for the 3d N = 2 Spin(7) theory with (Nf , Nc) =

(4, 1). Since the theory is s-confining, the full index should be equivalent to the index of

the dual description (5.54) without the last term. The R-charges of the elementary chiral

superfields are all set to be Rf = RS = 1
8 . The full index is given by

I
(Nf ,NS)=(4,1)

magnetic = 1 + x1/4
(
10t2 + u2

)
+

√
x

(
1

t8u4
+ 55t4 + 10t2u2 + u4

)
+ 4t3u2x5/8

+ x3/4

(
220t6 + 56t4u2 + 10t2u4 +

10t2 + u2

t8u4
+ u6

)
+ 4t3u2x7/8

(
10t2 + u2

)

+ x

(
1

t16u8
+ 715t8 +

1

t8
+ 230t6u2 +

10

t6u2
+ 56t4u4 +

55

t4u4
+ 10t2u6 + u8

)

+ 4t3u2x9/8
(

1

t8u4
+ 55t4 + 10t2u2 + u4

)

+ x5/4

(
1

t16u6
+

10

t14u8
+ 2002t10 + 770t8u2 +

u2

t8
+ 240t6u4 +

10

t6
+ 56t4u6 +

55

t4u2
+ 10t2u8 +

220

t2u4
+ u10

)
+ · · · ,

(5.71)
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10t2x1/4

u2x1/4

Yspinand

4t3u2x5/8

t4u2x3/4

Table 19: Quantum numbers for (Nf , NS) = (4, 1)

Spin(7) SU(4)Q U(1)Q U(1)S U(1)R
Q 7 1 0 Rf

S 8 1 0 1 RS

η = Λb
Nf ,NS

1 1 2Nf 2NS 2Nf (Rf − 1) + 2NS(RS − 1) + 10

MQQ := QQ 1 2 0 2Rf

MSS := SS 1 1 0 2 2RS

P := SQ3S 1 ¯ 3 2 3Rf + 2RS

R := SQ4S 1 1 4 2 4Rf + 2RS

Z := Y1Y 2
2 Y3 1 1 −8 −2 −8− 2(RS − 1)− 8(Rf − 1) = 2− 8Rf − 2RS

Yspin := Y 2
1 Y

2
2 Y3 1 1 −8 −4 −10− 8(Rf − 1)− 4(RS − 1)

Table 20: Quantum numbers for (Nf , NS) = (4, 1)

SU(4)Q U(1)Q U(1)S U(1)R
MQQ := QQ 2 0 2Rf

MSS := SS 1 0 2 2RS

P := SQ3S ¯ 3 2 3Rf + 2RS

R := SQ4S 1 4 2 4Rf + 2RS

Yspin := Y 2
1 Y

2
2 Y3 1 −8 −4 −10− 8(Rf − 1)− 4(RS − 1)

Table 21: Quantum numbers for (Nf , NS) = (4, 1)

SU(4)Q U(1)Q U(1)S U(1)R
η = Λb

Nf ,NS
1 2Nf 2NS 2Nf (Rf − 1) + 2NS(RS − 1) + 10

MQQ := QQ 2 0 2Rf

MSS := SS 1 0 2 2RS

P := SQ3S ¯ 3 2 3Rf + 2RS

R := SQ4S 1 4 2 4Rf + 2RS

det MQQ 1 8 0 8Rf

PMQQP 1 8 4 8Rf + 4RS

MSS := SS 1 0 2 2RS

η 1 8 2 8(Rf − 1) + 2(RS − 1) + 10

Y1 1 0 −(1 + sign(φ1 − φ3)) −2− (RS − 1)(1 + sign(φ1 − φ3))

Y2 1 0 0 −2
Y3 1 −8 −(1− sign(φ1 − φ3)) −2− (RS − 1)(1− sign(φ1 − φ3))− 8(Rf − 1)

Z := Y1Y 2
2 Y3 1 −8 −2 −8− 2(RS − 1)− 8(Rf − 1) = 2− 8Rf − 2RS

Y :=
√
Y1Z for φ1 ≥ φ3 1 −4 −2 −5− 4(Rf − 1)− 2(RS − 1) = 1− 4Rf − 2RS

Yspin := Y 2
1 Y

2
2 Y3 = Y 2 1 −8 −4 −10− 8(Rf − 1)− 4(RS − 1)

Z ′ := Y1Y3 1 −8 −2 −4− 2(RS − 1)− 8(Rf − 1)

Z ′′ := Y1Y2Y3 1 −8 −2 −6− 2(RS − 1)− 8(Rf − 1)
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