Exact results in

SUSY Spin(7) theories

Keita Nii (Univ. of Bern, Switzerland)
Based on K. Nii JHEPO5(2018)017

Motivations 1

- asymptotically-free gauge theories (IR strong)
various (low-enrgy) phases
confinement, Higgs, Coulomb and etc...
- Phases depend on:
temperature, space-time dimensions, matter contents Nf (Number of flavors), representations of matters:

gauge groups: (S)U, (S)O, USp, Spin, Pin,
Exceptionals...

Motivations 2

- To study strongly-coupled or non-perturbative regime with power of SUSY (holomorphy) \rightarrow analytically extract exact results!!
- Recent developments about 3d theories
$3 d \& 4 d$ physics are similar, but in some sense "3d" is more richer.
Chern-Simons terms, non-trivial $U(1)$ dynamics and bosonization

Motivations 3

- Many 3d dualities were found now: Seiberg-like, CS-type, non-SUSY (bosonization)
- Check of the 3d dualities/ analysis of the lowenergy physics \rightarrow (mapping of) monopole operators (Coulomb branch operators)
- difficult $\cdots \rightarrow$ power of supersymmetry

Today's topic

- 3d N=2 SUSY Spin(7) theories and their lowenergy dynamics, especially "confinement"
- First non-trivial case of Spin(N)
- vector \& spinorial representations
- 3d/4d relation

Plan of the talk

1. Introduction to 3d N=2 SUSY gauge theories
2. $\operatorname{Spin}(7)$ analysis in 3 d
3. Some checks of our analysis (3d/4d)

3d N=2 SUSY
 gauge theories

[Aharony-Hanany-Intriligator-Seiberg-Strassler '97]

3d gauge theories

- 3d gauge coupling is super-renormalizable and relevant.

$$
\left[g^{2}\right]=M \quad \hat{g}^{2}:=\frac{g^{2}}{E} \xrightarrow[E \rightarrow 0]{ } \infty
$$

3d $U(1)$ dynamics is also "IR strong" and non-trivial. ex. 3d "compact" U(1) QED shows confinement and chiral symmetry breaking.
Along the Coulomb branch, we have $\mathrm{U}(1)$ gauge theories which are still non-trivial.

$3 d N=2$ theories

[Aharony-Hanany-Intriligator-Seiberg-Strassler '97] [de Boer-Hori-Oz '97]

- 3d UV Lagrangian $=$ simple dimensional reduction of $4 d \mathrm{~N}=1$ SUSY

Chiral Superfield

$$
\Phi(x, \theta)=\phi+\theta \psi+\theta^{2} \widehat{F+\cdots} \text { auxiliary field }
$$

This gives us flat directions (Higgs branch of the moduli space).

Spin(7) cases

$S(x, \theta): 8$ dimensional spinor rep. in $\operatorname{Spin}(7)$
$Q(x, \theta): 7$ dimensional vector rep. in $\operatorname{Spin}(7)$

We need various gauge invariants.

$$
\begin{aligned}
& M_{S S}:=S S \\
& M_{Q Q}:=Q Q
\end{aligned}
$$

3d N=2 theories

[Aharony-Hanany-Intriligator-Seiberg-Strassler '97]

Vector superfield

$$
\begin{gathered}
V(x, \theta, \bar{\theta})=\theta \sigma^{\mu} \bar{\theta} A_{\mu}+\theta \sigma_{\uparrow}^{3} \bar{\theta} A_{3}+(\text { gaugino })+\cdots \quad \mu=0,1,2 \\
\text { adjoint scalars (Coulomb branch of moduli) }
\end{gathered}
$$

$$
G \xrightarrow{\left\langle A_{3}\right\rangle \neq 0} U(1)^{r} \longrightarrow \text { non-trivial } \cup(1) \text { dynamics }
$$

- 3d photon is dual to a scalar

$$
\begin{aligned}
\sigma & :=A_{3} \\
\partial_{\mu} a & :=\epsilon_{\mu \nu \rho} F^{\nu \rho}
\end{aligned}
$$

two real scalars
= one complex scalar

$$
V_{i}=\exp \left(\sigma_{i}+i a_{i}\right) \quad(i=1, \cdots, r)
$$

Low-energy dynamics

UV Lagrangian

- (quantum) flat directions (massless modes) ?
- Non-perturbative effects?
- Exact superpotential ? $\mathcal{L}_{e f f}=\int d^{2} \theta W_{\text {eff }}(\Phi)$
- Correct Coulomb branch operators (monopole operators) ?

There are two branches of moduli space: Higgs (meson, baryon) \& Coulomb Their interactions, low-energy superpotential for these massless modes?

Classical vs Quantum pictures?

Monopoles

- Along the Coulomb branch, we have a compact $\mathrm{U}(1)$.
- Theory admits monopoles (in 3d, these are instantons)

$$
\begin{aligned}
& \operatorname{Spin}(7) \rightarrow U(1)^{3} \\
& 3 \text { fundamental monopoles }
\end{aligned}
$$

- 3-dimensional classical Coulomb branch
- Monopole generates non-perturbative effects and modifies the classical Coulomb branch drastically.

Monopole effects

Monopole(instanton) looks like a vertex for fermions.

$$
\sim \lambda^{2} \psi^{2} e^{-S_{\text {on-shell }}}
$$

If the monopole-vertex has two fermions, the nonperturbative effects appear in the superpotential.

$$
\mathcal{L} \ni \int d^{2} \theta W_{\text {superpotential }} \ni \bar{\psi} \chi \phi^{\#}
$$

Fate of Coulomb branch in pure SYM

Spin(7) has rank 3. Its CB is classically 3-dimensional.

$$
\operatorname{Spin}(7) \xrightarrow{Y_{1}, Y_{2}, Y_{3}} U(1)^{3}
$$

Fermion zero-modes from gauginos

CB operator	gaugino
$Y_{1}=\exp \left[\sigma_{1}-\sigma_{2}\right]$	2
$Y_{2}=\exp \left[\sigma_{2}-\sigma_{3}\right]$	2
$\sigma_{i} \quad$: Adjoint scalars	
$Y_{3}=\exp \left[2 \sigma_{3}\right]$	2

Without matter, only gaugino contributes.

$$
W=\sum_{i} \frac{1}{Y_{i}}
$$

All the flat directions are lifted (no SUSY vacuum).

3d Spin(7) with spinor matters

- Fermion zero-modes

CB operator	gaugino	spinor
$Y_{1}=\exp \left[\sigma_{1}-\sigma_{2}\right]$	2	$1+\operatorname{sign}\left(\sigma_{1}-\sigma_{2}-\sigma_{3}\right)$
$Y_{2}=\exp \left[\sigma_{2}-\sigma_{3}\right]$	2	0
$Y_{3}=\exp \left[2 \sigma_{3}\right]$	2	$1-\operatorname{sign}\left(\sigma_{1}-\sigma_{2}-\sigma_{3}\right)$

Y2 is lifted. Y1 (or Y3) is lifted depending on the sign.
Globally, we need One coordinate for the Coulomb branch.

$$
W=\frac{1}{Y_{2}}+ \begin{cases}\frac{1}{Y_{3}} & \left(\sigma_{1}>\sigma_{2}+\sigma_{3}\right) \\ \frac{1}{Y_{1}} & \left(\sigma_{1}<\sigma_{2}+\sigma_{3}\right)\end{cases}
$$

For all the regions, the quantum CB is described by $Z:=Y_{1} Y_{2}^{2} Y_{3}$

$$
\sim \exp \left[\sigma_{1}+\sigma_{2}\right]
$$

Exact superpotentials: Spin(7) with Ns spinors

Matter contents and moduli coordinates

	$\operatorname{Spin}(7)$	$S U\left(N_{S}\right)$	$U(1)_{S}$	$U(1)_{R}$
S	$2^{N}=8$	\square	1	R_{S}
λ	Adj.	1	0	1
$M_{S S}:=S S$	1	\square	2	$2 R_{S}$
$B_{S}:=S^{4}$	1	\boxminus	4	$4 R_{S}$
$Z:=Y_{1} Y_{2}^{2} Y_{3}$	1	1	$-2 N_{S}$	$-8-2 N_{S}\left(R_{S}-1\right)$

$$
\begin{aligned}
& W_{N_{S} \leq 3}=\left(\frac{1}{Z \operatorname{det} M_{S S}}\right)^{\frac{1}{4-N_{S}}} \\
& W_{N_{S}=4}=X\left[Z\left(\operatorname{det} M_{S S}-B_{S}^{2}\right)-1\right] \\
& W_{N_{S}=5}=Z\left(\operatorname{det} M_{S S}-B_{S}^{i} B_{S}^{j} M_{S S, i j}\right)
\end{aligned}
$$

$$
W_{N_{S}=4}=X\left[Z\left(\operatorname{det} M_{S S}-B_{S}^{2}\right)-1\right] \quad \mathrm{X}: \text { Lagrange multiplier }
$$

Exact superpotentials: Spin(7) with Ns spinors

$$
\begin{aligned}
& W_{N_{S} \leq 3}=\left(\frac{1}{Z \operatorname{det} M_{S S}}\right)^{\frac{1}{4-N_{S}}} \longrightarrow \text { Runaway potential (no SUSY vacuum) } \\
& \begin{array}{l}
W_{N_{S}=4}=X\left[Z\left(\operatorname{det} M_{S S}-B_{S}^{2}\right)-1\right] \\
\\
\quad \begin{array}{l}
\text { Large vev of CB corresponds to small vevs of } \mathrm{HB} \text {. } \\
\text { moduli space is highly deformed. }
\end{array} \\
\begin{array}{l}
W_{N_{S}=5}=Z\left(\operatorname{det} M_{S S}-B_{S}^{i} B_{S}^{j} M_{S S, i j}\right)
\end{array} \\
\begin{array}{l}
\text { S-confinement: } \\
\text { meson } \mathrm{M}, \text { baryon B and a single gauge singlet } Z
\end{array} \\
\\
\text { At the origin of moduli space, there is no symmetry } \\
\text { breaking. }
\end{array}
\end{aligned}
$$

Nf vectors and Ns spinors

- Spin(7) allows vector and spinor representations. These zero-modes are

	adjoint	vector	spinor
Y_{1}	2	0	$1+\operatorname{sign}\left(\phi_{1}-\phi_{3}\right)$
Y_{2}	2	0	0
Y_{3}	2	2	$1-\operatorname{sign}\left(\phi_{1}-\phi_{3}\right)$

Y 2 is still lifted while Y 3 is not. Y 1 depends on the sign.

$$
W=\frac{1}{Y_{2}}+ \begin{cases}0 & \left(\phi_{1}>\phi_{3}\right) \\ \frac{1}{Y_{1}} & \left(\phi_{1}<\phi_{3}\right)\end{cases}
$$

One can generally expect two-dimensional CB.

$$
\begin{aligned}
Z & :=Y_{1} Y_{2}^{2} Y_{3} \\
Y_{\text {spin }} & :=Y_{1}^{2} Y_{2}^{2} Y_{3} \quad\left(\phi_{1}>\phi_{3}\right)
\end{aligned}
$$

S-confinement for (Nf, Ns)

We find s-confinement phases for

$$
(N f, N s)=(0,5),(1,4),(2,3),(3,2),(4,1),(6,0)
$$

3 vectors \& 2 spinors

	$\operatorname{Spin}(7)$	$S U(3)$	$S U(2)$	$U(1)_{Q}$	$U(1)_{S}$	$U(1)_{R}$
Q	\square	\square	1	1	0	R_{f}
S	$\mathbf{2}^{\mathbf{N}}=\mathbf{8}$	1	\square	0	1	R_{S}
λ	Adj.	1	1	0	0	1
$M_{Q Q}:=Q Q$	1	\square	1	2	0	$2 R_{f}$
$M_{S S}:=S S$	1	1	\square	0	2	$2 R_{S}$
$P_{S, 3}:=S Q^{3} S$	1	1	\square	3	2	$3 R_{f}+2 R_{S}$
$P_{A, 1}:=S Q S$	1	\square	1	1	2	$R_{f}+2 R_{S}$
$P_{A, 2}:=S Q^{2} S$	1	\square	1	2	2	$2 R_{f}+2 R_{S}$
$Z:=Y_{1} Y_{2}^{2} Y_{3}$	1	1	1	-6	-4	$-8-6\left(R_{f}-1\right)-4\left(R_{S}-1\right)$
$Y_{\text {spin }}$ for $\phi_{1} \geq \phi_{3}$	1	1	1	-3	-4	$-5-3\left(R_{f}-1\right)-4\left(R_{S}-1\right)=2-3 R_{f}-4 R_{S}$

The theory is s-confining and described by gauge singlets and the following superpotential.

$$
\begin{aligned}
W= & Z\left(\operatorname{det} M_{Q Q} \operatorname{det} M_{S S}-\operatorname{det} P_{S, 3}+P_{A, 2}^{2} M_{Q Q}-\frac{1}{2} P_{A, 1}^{2} M_{Q Q}^{2}\right) \\
& +Y_{\text {spin }}\left(P_{A, 1} P_{A, 2}-M_{S S} P_{S, 3}\right)
\end{aligned}
$$

$\operatorname{Spin}(7)$
$(N f, N s)=(3,2)$
dual

Non-gauge theory with
$M_{Q Q}, M_{S S}, P_{S 3}, P_{A 1}, P_{A 2}, Z$ and $Y_{\text {spin }}$

Vectors and one spinor: (Nf, Ns) = (4, 1)

	$\operatorname{Spin}(7)$	$S U(4)_{Q}$	$U(1)_{Q}$	$U(1)_{S}$	$U(1)_{R}$
Q	7	\square	1	0	R_{f}
S	8	1	0	1	R_{S}
$\eta=\Lambda_{N_{f}, N_{S}}^{b}$	1	1	$2 N_{f}$	$2 N_{S}$	$2 N_{f}\left(R_{f}-1\right)+2 N_{S}\left(R_{S}-1\right)+10$
$M_{Q Q}:=Q Q$	1	\square	2	0	$2 R_{f}$
$M_{S S}:=S S$	1	1	0	2	$2 R_{S}$
$P:=S Q^{3} S$	1	\square	3	2	$3 R_{f}+2 R_{S}$
$R:=S Q^{4} S$	1	1	4	2	$4 R_{f}+2 R_{S}$
$Z:=Y_{1} Y_{2}^{2} Y_{3}$	1	1	-8	-2	$-8-2\left(R_{S}-1\right)-8\left(R_{f}-1\right)=2-8 R_{f}-2 R_{S}$
$Y_{\text {spin }}:=Y_{1}^{2} Y_{2}^{2} Y_{3}$	1	1	-8	-4	$-10-8\left(R_{f}-1\right)-4\left(R_{S}-1\right)$

- Semi-classically, two Coulomb branch operators are necessary: Z \& Y
- But we find a quantum identification between them:

$$
Z \sim Y_{s p i n} M_{S S}
$$

$$
W=Y_{s p i n}\left[M_{S S}^{2} \operatorname{det} M_{Q Q}+P^{2} M_{Q Q}-R^{2}\right]
$$

Consistency checks

- Coincide with semi-classical analysis of the moduli space: okay
- Up lift to 4d N=1 SUSY gauge theories
- Flow to 3d N=2 G2/SU(3)/Spin(N < 7) gauge theories: okay
- Parity anomaly matching: okay
- Superconformal indices: consistent on both sides

3d and 4d relation

- In 4d, there is a chiral anomaly, but not for 3d.
- Additional U(1) symmetry in 3d
- In order to connect 3d and 4d, we need to introduce effects breaking the $U(1)$ symmetry.
- On S1 x R3, additional instantons (known as KK-monopole or twisted instanton) should be included.
- KK-monopole only contains 2 gaugino zero-modes, which leads to

$$
\Delta W=\eta Z
$$

Back to the 4d

Up lift into 4d

CBs should be integrated out since they are gauge fields.
One must include effects from S1 x R3 (KK-monopole).

$$
\Delta W=\eta Z
$$

$$
W_{N_{S}=5}=Z\left(\operatorname{det} M_{S S}-B_{S}^{i} B_{S}^{j} M_{S S, i j}\right) \quad+\eta Z
$$

$$
\operatorname{det} M_{S S}-B_{S}^{2} M_{S S}+\eta=0
$$

Integrating out Z
4d constraint [Pouliot '95]

$$
\frac{\partial W}{\partial Z}=0
$$

3d and 4d relation

Up lift to 4d: $(N f, N s)=(4,1)$ case

CB is integrated out.

One must include effects from S1 x R3 (KK - monopole)

$$
W_{\mathbb{S}_{1} \times \mathbb{R}_{3}}=\eta Z \sim \eta Y_{\text {spin }} M_{S S} \quad \eta: \text { dynamical scale of 4d gauge coupling }
$$

$$
W=Y_{\text {spin }}\left[M_{S S}^{2} \operatorname{det} M_{Q Q}+P^{2} M_{Q Q}-R^{2}\right]+\eta Y_{\text {spin }} M_{S S}
$$

Integrating-out Y (4d limit)

$$
M_{S S}^{2} \operatorname{det} M_{Q Q}+P^{2} M_{Q Q}-R^{2}+\eta M_{S S}=0
$$

4d quantum constraint

Summary \& Discussion

- We studied 3d N=2 SUSY Spin(7) gauge theory and found some s-confining phases whose CB is 1 or 2 dimensional.
- The most of the CB is lifted and it depends on the matter contents, which could be different from the semiclassical picture in general.
- 3d \& 4d are connected via KK-monopole.
- Spin(N) (7 < N < 15) is possible but not so straightforward.
- For larger Ns, we expect some Seiberg dual description but now not known. The dual would be $U(\mathrm{~F}-4)$ with symmetric matters.

"Superconformal Index"

- counting BPS states with weights
- partition function on S1 x S2
spin(3) rotation of $S 2$

$$
I=\operatorname{Tr}\left[(-1)^{F} e^{-\beta\{Q, S\}} x^{R+2 j_{3}} t^{F}\right]
$$

Fermion number

scalar BPS state (operator) with R-charge r \& global U(1)charge q

$$
x^{r} t^{q}
$$

- We can compute this quantity by employing a localization technique.

SCI in Spin(7) Ns=5

The theory is s-confining.

| | $S U(5)$ | $U(1)_{S}$ | $U(1)_{R}$ | |
| :---: | :---: | :---: | :---: | :---: |$\quad R_{S}=\frac{1}{8}$

$$
\begin{aligned}
& M_{S S} \begin{array}{c}
15 \times\left. 15\right|_{\text {symmetric }}=120 \\
M_{S S}^{2}+B_{S} \\
\downarrow
\end{array} \stackrel{Z M_{S S}}{ } \\
& 1+15 u^{2} x^{1 / 4}+125 u^{4} \sqrt{x}+\left(\frac{1}{u^{10}}+755 u^{6}\right) x^{3 / 4}+\left(3675 u^{8}+\frac{15}{u^{8}}\right) x+\left(15252 u^{10}+\frac{125}{u^{6}}\right) x^{5 / 4} \\
& +\left(\frac{1}{u^{20}}+55880 u^{12}+\frac{750}{u^{4}}\right) x^{3 / 2}+5\left(37004 u^{14}+\frac{717}{u^{2}}+\frac{3}{u^{18}}\right) x^{7 / 4}+\left(562985 u^{16}+\frac{125}{u^{16}}+14402\right) x^{2} \\
& +\left(\frac{1}{u^{30}}+1594185 u^{18}+\frac{750}{u^{14}}+50245 u^{2}\right) x^{9 / 4}+\left(4241879 u^{20}+155550 u^{4}+\frac{3585}{u^{12}}+\frac{15}{u^{28}}\right) x^{5 / 2} \\
& +\left(10688125 u^{22}+433550 u^{6}+\frac{14403}{u^{10}}+\frac{125}{u^{26}}\right) x^{11 / 4}+\left(\frac{1}{u^{40}}+25661515 u^{24}+\frac{750}{u^{24}}+1097955 u^{8}+\frac{50270}{u^{8}}\right) x^{3}+\cdots
\end{aligned}
$$

One can also derive the same index from $M_{S S}, B_{S}, Z$

SCl in Spin(7) $(\mathrm{Nf}, \mathrm{Ns})=(4,1)$

	$S U(4)_{Q}$	$U(1)_{Q}$	$U(1)_{S}$	$U(1)_{R}$
$M_{Q Q}:=Q Q$	\square	2	0	$2 R_{f}$
$M_{S S}:=S S$	1	0	2	$2 R_{S}$
$P:=S Q^{3} S$	\square	3	2	$3 R_{f}+2 R_{S}$
$R:=S Q^{4} S$	1	4	2	$4 R_{f}+2 R_{S}$
$Y_{\text {spin }}:=Y_{1}^{2} Y_{2}^{2} Y_{3}$	1	-8	-4	$-10-8\left(R_{f}-1\right)-4\left(R_{S}-1\right)$
$u^{2} x^{1 / 4}$				
$4 t^{3} u^{2} x^{5 / 8}$				
$t^{4} u^{2} x^{3 / 4}$				
$\frac{x^{1 / 2}}{t^{8} u^{4}}$				

The theory is dual to a non-gauge theory with $M_{Q Q}, M_{S S}, P, R$ and $Y_{\text {spin }}$

$$
\begin{aligned}
& Y_{\text {spin }} M_{S S} \\
1 & +x^{1 / 4}\left(10 t^{2}+u^{2}\right)+\sqrt{x}\left(\frac{1}{t^{8} u^{4}}+55 t^{4}+10 t^{2} \mu^{2}+u^{4}\right)+4 t^{3} u^{2} x^{5 / 8} \\
& +x^{3 / 4}\left(220 t^{6}+56 t^{4} u^{2}+10 t^{2} u^{4}+\frac{10 t^{2}+u^{2}}{t^{8} u^{4}}+u^{6}\right)+4 t^{3} u^{2} x^{7 / 8}\left(10 t^{2}+u^{2}\right) \\
& +x\left(\frac{1}{t^{16} u^{8}}+715 t^{8}+\frac{1}{t^{8}}+230 t^{6} u^{2}+\frac{10}{t^{6} u^{2}}+56 t^{4} u^{4}+\frac{55}{t^{4} u^{4}}+10 t^{2} u^{6}+u^{8}\right) \\
& +4 t^{3} u^{2} x^{9 / 8}\left(\frac{1}{t^{8} u^{4}}+55 t^{4}+10 t^{2} u^{2}+u^{4}\right) \\
& +x^{5 / 4}\left(\frac{1}{t^{16} u^{6}}+\frac{10}{t^{14} u^{8}}+2002 t^{10}+770 t^{8} u^{2}+\frac{u^{2}}{t^{8}}+240 t^{6} u^{4}+\frac{10}{t^{6}}+56 t^{4} u^{6}+\frac{55}{t^{4} u^{2}}+10 t^{2} u^{8}+\frac{220}{t^{2} u^{4}}+u^{10}\right)+\cdots,
\end{aligned}
$$

