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Part I:

Introduction



Gauged linear sigma models (GLSMs)

• GLSMs are two-dimensional gauge theories with
Witten, 93

1 N = (2, 2) supersymmetry

2 classical R-symmetry U(1)V × U(1)A

3 vector multiplets (gauge fields) and chiral multiplets (matter)

• Specific model determined by

1 Gauge group G = U(1)` × G semi-simple

2 Matter spectrum
G-rep. R-charge twisted mass

Φα ρα qα mα
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Moduli and Target Space Geometry

• GLSMs come as families of theories with moduli

1 Kähler m. τ = r − i θ2π (for each U(1) factor in G )

2 Complex structure m. z (in superpotential)

• At low energies fields take values in target space Xτ,z (space of gauge
inequivalent vacua)

Uτ,z(φ) =
∣∣D-terms(τ)

∣∣2︸ ︷︷ ︸
from gauge group + spectrum

+
∣∣F-terms(z)

∣∣2︸ ︷︷ ︸
from superpotential

+ . . .

Xτ,z(φ) = U−1
τ,z (0)�G

General philosophy

Study Xτ,z with gauge theory, in particular its moduli dependence
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Axial Anomaly and Conformal Models

Witten, 93; Morrison, Plesser, 94

• Axial R-symmetry U(1)A is anomalous in general.

• In conformal models anomaly cancels due to

ρα : G → SL(V )
(∑

charges = 0
)

Consequence:

IR theory is family of non-trival N = (2, 2) SCFT with central charge

c = −3 dim g + 3
∑
α

(1− qα) dim ρα

= 3 dimCX
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Example

• Consider GLSM with gauge group G = U(1) and chiral matter
spectrum

Chiral multiplet G = U(1) charge qα mα

P −5 2 0

φa , 1 ≤ a ≤ 5 +1 0 0

Witten, 93

• We find:

1 No anomaly:
∑

charges = 0

2 Central charge: c = −3 dim g + 3
∑
α

(1− qα) dim ρα = 9

3 Target space: X = CP4 ∩ {homogeneous degree 5 poly. = 0}
= CP4[5]

= Quintic Calabi–Yau threefold
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Part II:

Quantum cohomology from correlation
functions



Correlation Functions of Adjoint Scalars

• Study correlation functions of scalars σ in vector multiplet V on
A-twisted two-sphere with off shell supergravity background

Festuccia, Seiberg, 11; Closset et al., 15: Benini et al., 15

BRST closed insertions: σN = σ(North-pole)

σS = σ(South-pole)

• Quantum exact expression by localization:
Hori, Vafa, 00; Pestun, 07; Closset et al., 15: Benini et al., 15

〈σnNσmS 〉(Q) =
∑
k ∈Λ

Qk Resσ
[(
σ − ε k

2

)n (
σ + εk2

)m
Z1-loop(σ, k)

]
with Λ = magnetic charge lattice and Q = exp (−2πτ)

• Correlators 〈σnNσmS 〉 = 〈σnNσmS 〉(Q) are rational in Q
Morrison, Plesser, 94
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Correlator Relations

• Aim: Determine universal linear relations between correlators, such
that with polynomials cm and for all n

RS =
M∑

m=0

cm(Q) 〈σnN σmS 〉(Q) = 0

• Result: Algorithm for their derivation

1 Gauge group G and matter spectrum immediately determine rational
functions g` (for which we have a closed formula)

2 Find polynomials p` subject to constraint
s∑
`=0

p`(w) · g`(w) = 0

3 RS =
s∑
`=0

Q` 〈σn
N p`(σS + ε `)〉 is universal correlator relation
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Hilbert Space Interpretation

• Interpret correlators as matrix elements of operators σN and σS in
gauge theory ground state |Ω〉Q

〈σnN σmS 〉(Q) = Q〈Ω|σn
N σm

S |Ω〉Q

• Consequences / results:

1 Relations become operators RS that annihilate |Ω〉Q

RS = Q〈Ω|σn
N · RS |Ω〉Q = 0 ⇒ RS |Ω〉Q = 0

2 Non-trival commutation relation between Q and σS:

σn
S · RS |Ω〉Q = 0 ⇒ [σS,Q] = εQ

⇒ Differential representation:

Q = Q , σS = εQ∂Q = εΘ

Andreas Gerhardus 8 / 17



Example: Part 1

• Recall: GLSM with quintic CP4[5] target space

Chiral multiplet G = U(1) charge qα mα

P −5 2 0

φa , 1 ≤ a ≤ 5 1 0 0

• Three steps to determine universal correlator relation:

1 Spectrum gives: g0(w) = 1 , g1(w) = −w4

5
·

4∏
s=1

1

5w − εs

2 Solve constraint: p0(w) = w4, p1(w) = +5
4∏

s=1

(5w − εs)

3 Write down relation:

RS = 〈σn
Nσ

4
S〉+ 5Q〈σn

N (5σS + ε) · · · (5σS + 4ε)〉 = 0
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Example: Part 2

• In differential representation RS corresponds to operator RS,

RS = 〈σnNσ4
S〉+ 5Q〈σnN (5σS + ε) · · · (5σS + 4ε)〉

ε−4RS= L = Θ4 + 5Q(5Θ + 1)(5Θ + 2)(5Θ + 3)(5Θ + 4)

This is the Picard–Fuchs operator of the quintic CP4[5]!

Intermediate summary of results Jockers, Ninad, AG, 18

* Algorithm to determine correlator relations directly from defining
gauge theory data

* Relations correspond to operators that describe the ground state’s
moduli dependence

* These are Picard–Fuchs (or GKZ) operators of the target space
geometry and thus govern the target space quantum cohomology
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Differential Operators in Terms of Correlators

• Turn logic around:
Assume there exists an operator RS which annihaltes |Ω〉Q , then

RS =
N∑

m=0

cm(Q)σm
S ⇒ 0 = RS =

N∑
m=0

cm(Q) 〈σnNσmS 〉 ∀n

• Simple idea:

∗ Fix order N and number of Qs (corresponding to dimC X and h1,1)

∗ List constraint for several n and solve for cm in terms of 〈σa
Nσ

b
S〉

Result: Jockers, Ninad, AG, 18

For several classes (fixed dimCX and h1,1) of Calabi–Yau manifolds:
Universal formulas for Picard–Fuchs operators in terms of gauge theory
correlators
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Example: One-Parameter Calabi–Yau Threefolds

For all 3-dim. Calabi–Yau manifolds with a single Kähler parameter:

L = + κ2
0,3(εΘ)4 − 2κ0,3 (εΘκ0,3) (εΘ)3

+
[
2 (εΘκ0,3)2 − κ0,3

(
ε2Θ2 κ0,3 + κ2,3

) ]
(εΘ)2

+
[
2κ2,3 (εΘκ0,3)− κ0,3 (εΘκ2,3)

]
(εΘ)

+
[
κ2

2,3 − κ0,3κ3,4 − (εΘκ0,3) (εΘκ2,3) + κ2,3

(
ε2Θ2 κ0,3

) ]
where κn,m = 〈σnNσmS 〉 are correlators of the associated GLSM

Jockers, Ninad, AG, 18

• Automatically fulfills constraint imposed by special geometry

c1 =
1

2
c2c3 −

1

8
c3

3 + εΘc2 −
3

4
c3 (εΘc3)− 1

2
ε2Θ2c3 for c4 = 1

Strominger, 90
Almkvist, Zudilin, 04; van Enckevort, van Straten, 04
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Part III:

Duality and sphere partition



Taking One Step Back

• Approach so far:

1 GLSM is given

2 Calculate RG-invariant observable to analyse low energy physics

• Ambitious question: Can we do the reverse?

1 Given such an observable,

2 can we reconstruct the GLSM or its low energy effective description?

• More modest question: Can we test Seiberg-like dualities of 2D
gauge theories? Seiberg, 94: Hori, 11

1 Take two conjecturally dual theories

2 Compare IR observable, this talk: Two sphere partition function
e.g. Jockers et al., 12; Jockers, AG, 15; Closset et al., 17

Römelsberger, 06; Dolan, Osborne, 09
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Skew Symplectic Sigma Models and Duality Proposal

• Skew symplectic sigma models SSSMk,m,n are class of GLSM with

1 Gauge group: G = U(1)× USp(2k) ⇒ 1 Kähler modulus τ

2 Matter: Singlets + fundamentals, determined by m and n

• Conformal models with smooth CY3 target space:

SSSM1,12,6 with G = U(1)× SU(2)

SSSM2,9,6 with G = U(1)× USp(4)

Duality Proposal: Jockers, AG, 15

SSSM1,12,6 and SSSM2,9,6 are (strong-weak) dual to each other
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Duality from Sphere Partition Function

• Both models have a strong and a weak coupling phase

Re τ → +∞ : weak coupling

Re τ → −∞ : strong coupling

• Quantum exact formula for sphere partition function as sum of
finite-dimensional Mellin–Barnes integral

Benini, Cremonesi, 12; Doroud et al., 12

ZS2(τ) ∼
∑

k ∈magnetic
charges

∫
h

ddim hσ Zclass(τ, σ, k) Z1-loop(σ, k)

Strong evidence of (strong-weak) duality: Jockers, AG, 15

ZS2(SSSM1,12,6, τ) = ZS2(SSSM2,9,6,−τ)
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Summary and Outlook

• Key results:

1 Detailed and explicit connection of GLSM correlators to target space
quantum cohomology

2 Universal formulas for Picard–Fuchs operators in terms of correlators

3 Strong-weak coupling duality between pair of non-Abelian GLSMs

• Room for future work:

1 More systematic understanding of dualities, especially for non-Abelian
models

2 Going backwards: Reconstruct GLSM from given a Picard–Fuchs
operator
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Thank you for your attention!

Questions?



Backup



A-twist and Q-dependence of Correlators

• Study correlation functions of scalars σ in vector multiplet V on
A-twisted two-sphere with off shell supergravity background

Festuccia, Seiberg, 11; Closset et al., 15: Benini et al., 15

N

S

Kμ

Killing vector field Kµ

Graviphoton background Cµ = ε
2Kµ

• Dependence of correlators 〈σnNσmS 〉(Q) on Q determined by sum of
matter charges SQ =

∑
charges

Witten, 93; Morrison, Plesser, 94

SQ > 0 : polynomial in Q

SQ = 0 : rational in Q

SQ < 0 : polynomial in Q−1



Rational functions g` from GLSM spectrum

• Starting point in derivation of correlator relations are rational
functions g`

• They follow immediately from GLSM matter spectrum

1
G-rep. R-charge twisted mass

Φα ρα qα mα

2 g`(w) =
∏
α

∞∏
s=1

w · ρα + mα + ε (1− qα

2 − s)

∞∏
s=1+ρα·`

w · ρα + mα + ε (1− qα

2 − s)



Geometric Interpretation of Correlators

• To geometric target space X associate Givental I-function IX

1 Valued in vertical cohomology, IX (Q, ε) ∈ Heven(X )

2 Governs quantum cohomology of X / OPE of σ fields Givental, 96

3 Generates correlators: 〈σn
N σ

m
S 〉 =

∫
X

(−εΘ)nIX (Q,−ε)∪ (εΘ)mIX (Q, ε)

Ueda, Yoshida, 16; Kim et al., 16

• Differential operators RS annihilate Givental I-function

0 = RS =

∫
X

(−εΘ)nIX (Q,−ε) ∪
[∑

m

cm (εΘ)m︸ ︷︷ ︸
RS

IX (Q, ε)

]

Result

Differential operators RS annihilate Givental I-function, RSIX = 0, and
thus govern target space quantum cohomology



Skew Symplectic Sigma Models SSSMk ,m,n

• Class of skew symplectic sigma models SSSMk,m,n

1 Gauge group G = U(1)× USp(2k) ⇒ 1 Kähler modulus τ

2 Matter spectrum Chiral multiplet ρα qα mα

P[ij], 1 ≤ i < j ≤ n 1−2 2 0

Q 2k−3 2 0

φa, a = 1, . . . ,m 12 0 0

Xi , i = 1, . . . , n 2k1 0 0

• Integers (k ,m, n) determine axial anomaly and central charge

Conformal models with smooth CY3 target space (c = 9)

SSSM1,12,6 and SSSM2,9,6



Superpotential and Target Space

• Superpotential: Most general holomorphic, gauge invariant function
of R-charge 2, here

Wz = tr
[
P A(φ) + P XT εX

]
+ B(φ)QT εX

with A(φ)[ij] = Aa
[ij]φa, B(φ)i = Ba

i φa, ε =

(
0 1k×k

−1k×k 0

)
• Complex structure moduli: Aa

[ij] and Ba
i

• Determine semi-classical target space Xτ ,z in three steps:

1 Write down D-terms and F-terms

2 Solve D(τ) = F = 0 for Re τ � 0 or Re τ � 0

3 For consistency: No unbroken non-Abelian subgroup G ′ ⊂ G



SSSMk,m,n Phase Re τ � 0: Weak Coupling

• Solving D(τ) = F = 0 for Re τ � 0 gives

Semi-classical target space variety Re τ � 0

Xk,m,n =
{
φ ∈ CPm−1

∣∣ rkA(φ) ≤ 2k and A(φ) · B(φ) = 0
}

• Heuristic (incomplete) derivation:

1 Abelian D-term: Not all φa = 0 ⇒ φ ∈ CPm−1

2 F-term for P[ij]: A(φ) = −XT εX with X = (X1, . . . ,Xn)

⇒ rkA(φ) ≤ rkX ≤ 2k

3 F-term for Q: FQ = εX · B(φ) = 0

⇒ −XTFQ = A(φ) · B(φ) = 0



SSSMk,m,n Phase Re τ � 0: Strong Coupling

• Gauge group broken to non-Abelian subgroup USp(2k)

1 Strong coupling dynamics in infrared

2 Dual description: Weakly coupled mesons c.f. Hori, 11

• For SSSMk,m,n:

P[ij ] base

fibered

USp(2k) theory of (Xi,Q)

of mesons QTϵ Xi

Effective theory

Semi-classical target space variety Re τ � 0

Yk,m,n ' Xk̃,m̃,n with k̃ = n
2 − k , m̃ = n(n+1)

2 −m, n even

In particular: 1) Y1,12,6 ' X2,9,6 and 2) Y2,9,6 ' X1,12,6



Phase Structure and Conjecture of Duality

Re(τ) ∞-∞

Re(τ) ∞- ∞

strongly coupled

weakly coupledstrongly coupled

weakly coupled

1,12,6 1,12,6

2,9,6 2,9,6

==

SSSM2,9,6

SSSM1,12,6

Hori dual



Sphere Partition Function Supports Duality Proposal

Strong evidence of duality:

ZS2(SSSM1,12,6, τ) = ZS2(SSSM2,9,6,−τ)

• In addition we obtained:

1 Geometric invariants of Calabi–Yau target spaces (from Kähler
potential)

X1,12,6 = Y2,9,6 Y1,12,6 = X2,9,6

Degree 33 21

Euler characterstic −102 −102

Genus 0 GW invariants 252, 1854 . . . 387, 4671 . . .

2 Combinatorial algorithm to evaluate Mellin–Barnes integrals of any
dimension
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