Supersymmetric Sigma Models: Dualities and Quantum
 Geometry

2nd international conference on:
Supersymmetric theories, dualites and deformations Albert Einstein Center, Bern

Andreas Gerhardus

Physikalisches Institut der Universität Bonn
Bethe Center for Theoretical Physics
H. Jockers, U. Ninad, AG, Nuclear Physics B, arXiv: 1803.10253
H. Jockers, AG, Journal of Geometry and Physics, arXiv: 1505.00099

July 16, 2018

Plan for Today

- Part I: Introduction
- PaRT II: Quantum cohomology from CORRELATION FUNCTIONS
- Part III Duality and sphere partition FUNCTION

Part I:

Introduction

Gauged linear sigma models (GLSMs)

- GLSMs are two-dimensional gauge theories with
(1) $\mathcal{N}=(2,2)$ supersymmetry
(2) classical R-symmetry $U(1)_{V} \times U(1)_{A}$
(3) vector multiplets (gauge fields) and chiral multiplets (matter)
- Specific model determined by
(1) Gauge group

$$
G=U(1)^{\ell} \times G_{\text {semi-simple }}
$$

(2) Matter spectrum

	G-rep.	R-charge	twisted mass
Φ_{α}	ρ_{α}	\mathfrak{q}_{α}	\mathfrak{m}_{α}

Moduli and Target Space Geometry

- GLSMs come as families of theories with moduli
(1) Kähler m.

$$
\tau=r-i \frac{\theta}{2 \pi}
$$

(for each $U(1)$ factor in G)
(2) Complex structure m.
z (in superpotential)

Moduli and Target Space Geometry

- GLSMs come as families of theories with moduli
(1) Kähler m. $\quad \tau=r-i \frac{\theta}{2 \pi} \quad$ (for each $U(1)$ factor in G)
(2) Complex structure m (in superpotential)
- At low energies fields take values in target space $\mathcal{X}_{\tau, z}$ (space of gauge inequivalent vacua)

$$
\begin{aligned}
& U_{\tau, z}(\phi)=\underbrace{|D-\operatorname{terms}(\tau)|^{2}}_{\text {from gauge group }+ \text { spectrum }}+\underbrace{\mid \text { F-terms }\left.(z)\right|^{2}}_{\text {from superpotential }}+\ldots \\
& \mathcal{X}_{\tau, z}(\phi)=U_{\tau, z}^{-1}(0) / G
\end{aligned}
$$

General philosophy
Study $\mathcal{X}_{\tau, z}$ with gauge theory, in particular its moduli dependence

Axial Anomaly and Conformal Models

- Axial R-symmetry $U(1)_{A}$ is anomalous in general.
- In conformal models anomaly cancels due to

$$
\rho_{\alpha}: G \rightarrow S L(V) \quad\left(\sum \text { charges }=0\right)
$$

Consequence:
IR theory is family of non-trival $\mathcal{N}=(2,2)$ SCFT with central charge

$$
\begin{aligned}
c & =-3 \operatorname{dim} \mathfrak{g}+3 \sum_{\alpha}\left(1-\mathfrak{q}_{\alpha}\right) \operatorname{dim} \rho_{\alpha} \\
& =3 \operatorname{dim}_{\mathbb{C}} \mathcal{X}
\end{aligned}
$$

Example

- Consider GLSM with gauge group $G=U(1)$ and chiral matter spectrum

Chiral multiplet	$G=U(1)$ charge	\mathfrak{q}_{α}	\mathfrak{m}_{α}
P	-5	2	0
$\phi_{a}, 1 \leq a \leq 5$	+1	0	0

- We find:
(1) No anomaly: $\quad \sum$ charges $=0$
(2) Central charge: $\quad c=-3 \operatorname{dim} \mathfrak{g}+3 \sum_{\alpha}\left(1-\mathfrak{q}_{\alpha}\right) \operatorname{dim} \rho_{\alpha}=9$
(3) Target space: $\quad \mathcal{X}=\mathbb{C} \mathbb{P}^{4} \cap\{$ homogeneous degree 5 poly. $=0\}$ $=\mathbb{C P}^{4}[5]$
$=$ Quintic Calabi-Yau threefold

PART II:
Quantum cohomology from correlation FUNCTIONS

Correlation Functions of Adjoint Scalars

- Study correlation functions of scalars σ in vector multiplet V on A-twisted two-sphere with off shell supergravity background

BRST closed insertions: $\quad \sigma_{N}=\sigma$ (North-pole)

$$
\sigma_{S}=\sigma(\text { South-pole })
$$

Correlation Functions of Adjoint Scalars

- Study correlation functions of scalars σ in vector multiplet V on A-twisted two-sphere with off shell supergravity background

BRST closed insertions: $\quad \sigma_{N}=\sigma$ (North-pole)

$$
\sigma_{S}=\sigma(\text { South-pole })
$$

- Quantum exact expression by localization:

Hori, Vafa, 00; Pestun, 07; Closset et al., 15: Benini et al., 15

$$
\left\langle\sigma_{N}^{n} \sigma_{S}^{m}\right\rangle(Q)=\sum_{k \in \Lambda} Q^{k} \operatorname{Res}_{\sigma}\left[\left(\sigma-\epsilon \frac{k}{2}\right)^{n}\left(\sigma+\epsilon \frac{k}{2}\right)^{m} Z_{1 \text {-loop }}(\sigma, k)\right]
$$

with $\Lambda=$ magnetic charge lattice and $Q=\exp (-2 \pi \tau)$

- Correlators $\left\langle\sigma_{N}^{n} \sigma_{S}^{m}\right\rangle=\left\langle\sigma_{N}^{n} \sigma_{S}^{m}\right\rangle(Q)$ are rational in Q

Correlator Relations

- Aim: Determine universal linear relations between correlators, such that with polynomials c_{m} and for all n

$$
R_{S}=\sum_{m=0}^{M} c_{m}(Q)\left\langle\sigma_{N}^{n} \sigma_{S}^{m}\right\rangle(Q)=0
$$

- Result: Algorithm for their derivation
(1) Gauge group G and matter spectrum immediately determine rational functions g_{ℓ} (for which we have a closed formula)
(2) Find polynomials p_{ℓ} subject to constraint $\sum_{\ell=0}^{s} p_{\ell}(w) \cdot g_{\ell}(w)=0$
(3) $R_{S}=\sum_{\ell=0}^{s} Q^{\ell}\left\langle\sigma_{N}^{n} p_{\ell}\left(\sigma_{S}+\epsilon \ell\right)\right\rangle$ is universal correlator relation

Hilbert Space Interpretation

- Interpret correlators as matrix elements of operators $\sigma_{\mathbf{N}}$ and $\sigma_{\mathbf{S}}$ in gauge theory ground state $|\Omega\rangle_{Q}$

$$
\left\langle\sigma_{N}^{n} \sigma_{S}^{m}\right\rangle(Q)={ }_{Q}\langle\Omega| \boldsymbol{\sigma}_{\mathbf{N}}^{n} \sigma_{\mathbf{S}}^{m}|\Omega\rangle_{Q}
$$

- Consequences / results:
(1) Relations become operators $\boldsymbol{R}_{\mathrm{S}}$ that annihilate $|\Omega\rangle_{Q}$

$$
R_{S}={ }_{Q}\langle\Omega| \boldsymbol{\sigma}_{\mathbf{N}}^{n} \cdot \boldsymbol{R}_{\mathbf{S}}|\Omega\rangle_{Q}=0 \quad \Rightarrow \quad \boldsymbol{R}_{\mathbf{S}}|\Omega\rangle_{Q}=0
$$

(2) Non-trival commutation relation between \boldsymbol{Q} and σ_{S} :

$$
\begin{array}{rll}
\boldsymbol{\sigma}_{\mathbf{S}}^{n} \cdot \boldsymbol{R}_{\mathbf{S}}|\Omega\rangle_{Q}=0 & \Rightarrow & {\left[\sigma_{\mathbf{S}}, \boldsymbol{Q}\right]=\epsilon \boldsymbol{Q}} \\
& \Rightarrow & \text { Differential representation: } \\
& & \boldsymbol{Q}=Q, \quad \sigma_{\mathbf{S}}=\epsilon Q \partial_{Q}=\epsilon \Theta
\end{array}
$$

Example: Part 1

- Recall: GLSM with quintic $\mathbb{C P}^{4}[5]$ target space

Chiral multiplet	$G=U(1)$ charge	\mathfrak{q}_{α}	\mathfrak{m}_{α}
P	-5	2	0
$\phi_{a}, 1 \leq a \leq 5$	1	0	0

- Three steps to determine universal correlator relation:
(1) Spectrum gives: $\quad g_{0}(w)=1, \quad g_{1}(w)=-\frac{w^{4}}{5} \cdot \prod_{s=1}^{4} \frac{1}{5 w-\epsilon s}$
(2) Solve constraint: $\quad p_{0}(w)=w^{4}, \quad p_{1}(w)=+5 \prod_{s=1}^{4}(5 w-\epsilon s)$
(3) Write down relation:

$$
R_{S}=\left\langle\sigma_{N}^{n} \sigma_{S}^{4}\right\rangle+5 Q\left\langle\sigma_{N}^{n}\left(5 \sigma_{S}+\epsilon\right) \cdots\left(5 \sigma_{S}+4 \epsilon\right)\right\rangle=0
$$

Example: Part 2

- In differential representation R_{S} corresponds to operator $\boldsymbol{R}_{\mathrm{S}}$,

$$
\begin{aligned}
R_{S} & =\left\langle\sigma_{N}^{n} \sigma_{S}^{4}\right\rangle+5 Q\left\langle\sigma_{N}^{n}\left(5 \sigma_{S}+\epsilon\right) \cdots\left(5 \sigma_{S}+4 \epsilon\right)\right\rangle \\
\epsilon^{-4} \boldsymbol{R}_{\mathbf{S}} & =\mathcal{L}=\Theta^{4}+5 Q(5 \Theta+1)(5 \Theta+2)(5 \Theta+3)(5 \Theta+4)
\end{aligned}
$$

This is the Picard-Fuchs operator of the quintic $\mathbb{C P}^{4}[5]$!

Intermediate summary of results

* Algorithm to determine correlator relations directly from defining gauge theory data
* Relations correspond to operators that describe the ground state's moduli dependence
* These are Picard-Fuchs (or GKZ) operators of the target space geometry and thus govern the target space quantum cohomology

Differential Operators in Terms of Correlators

- Turn logic around:

Assume there exists an operator $\boldsymbol{R}_{\mathbf{S}}$ which annihaltes $|\Omega\rangle_{Q}$, then

$$
\boldsymbol{R}_{\mathbf{S}}=\sum_{m=0}^{N} c_{m}(\boldsymbol{Q}) \boldsymbol{\sigma}_{\mathbf{S}}^{m} \Rightarrow 0=R_{S}=\sum_{m=0}^{N} c_{m}(Q)\left\langle\sigma_{N}^{n} \sigma_{S}^{m}\right\rangle \quad \forall n
$$

- Simple idea:
* Fix order N and number of $Q s$ (corresponding to $\operatorname{dim}_{\mathbb{C}} \mathcal{X}$ and $h^{1,1}$)
* List constraint for several n and solve for c_{m} in terms of $\left\langle\sigma_{N}^{a} \sigma_{S}^{b}\right\rangle$

Result:

For several classes (fixed $\operatorname{dim}_{\mathbb{C}} \mathcal{X}$ and $h^{1,1}$) of Calabi-Yau manifolds: Universal formulas for Picard-Fuchs operators in terms of gauge theory correlators

Example: One-Parameter Calabi-Yau Threefolds

For all 3-dim. Calabi-Yau manifolds with a single Kähler parameter:

$$
\begin{aligned}
\mathcal{L}= & +\kappa_{0,3}^{2}(\epsilon \Theta)^{4}-2 \kappa_{0,3}\left(\epsilon \Theta \kappa_{0,3}\right)(\epsilon \Theta)^{3} \\
& +\left[2\left(\epsilon \Theta \kappa_{0,3}\right)^{2}-\kappa_{0,3}\left(\epsilon^{2} \Theta^{2} \kappa_{0,3}+\kappa_{2,3}\right)\right](\epsilon \Theta)^{2} \\
& +\left[2 \kappa_{2,3}\left(\epsilon \Theta \kappa_{0,3}\right)-\kappa_{0,3}\left(\epsilon \Theta \kappa_{2,3}\right)\right](\epsilon \Theta) \\
& +\left[\kappa_{2,3}^{2}-\kappa_{0,3} \kappa_{3,4}-\left(\epsilon \Theta \kappa_{0,3}\right)\left(\epsilon \Theta \kappa_{2,3}\right)+\kappa_{2,3}\left(\epsilon^{2} \Theta^{2} \kappa_{0,3}\right)\right]
\end{aligned}
$$

where $\kappa_{n, m}=\left\langle\sigma_{N}^{n} \sigma_{S}^{m}\right\rangle$ are correlators of the associated GLSM

- Automatically fulfills constraint imposed by special geometry

$$
c_{1}=\frac{1}{2} c_{2} c_{3}-\frac{1}{8} c_{3}^{3}+\epsilon \Theta c_{2}-\frac{3}{4} c_{3}\left(\epsilon \Theta c_{3}\right)-\frac{1}{2} \epsilon^{2} \Theta^{2} c_{3} \quad \text { for } c_{4}=1
$$

Part III:

DUALITY AND SPHERE PARTITION

Taking One Step Back

- Approach so far:
(1) GLSM is given
(2) Calculate RG-invariant observable to analyse low energy physics

Taking One Step Back

- Approach so far:
(1) GLSM is given
(2) Calculate RG-invariant observable to analyse low energy physics
- Ambitious question: Can we do the reverse?
(1) Given such an observable,
(2) can we reconstruct the GLSM or its low energy effective description?

Taking One Step Back

- Approach so far:
(1) GLSM is given
(2) Calculate RG-invariant observable to analyse low energy physics
- Ambitious question: Can we do the reverse?
(1) Given such an observable,
(2) can we reconstruct the GLSM or its low energy effective description?
- More modest question: Can we test Seiberg-like dualities of 2D gauge theories?
(1) Take two conjecturally dual theories
(2) Compare IR observable, this talk: Two sphere partition function

Skew Symplectic Sigma Models and Duality Proposal

- Skew symplectic sigma models $S_{S S M_{k, m, n}}$ are class of GLSM with
(1) Gauge group: $\quad G=U(1) \times U S p(2 k) \quad \Rightarrow \quad 1$ Kähler modulus τ
(2) Matter: \quad Singlets + fundamentals, determined by m and n
- Conformal models with smooth CY_{3} target space:

$S_{S S M}^{1,12,6}$	with	$G=U(1) \times S U(2)$
$S_{S S M}^{2,9,6}$	with	$G=U(1) \times U S p(4)$

Duality Proposal:
SSSM $1,12,6$ and SSSM $_{2,9,6}$ are (strong-weak) dual to each other

Duality from Sphere Partition Function

- Both models have a strong and a weak coupling phase

$$
\begin{array}{ll}
\operatorname{Re} \tau \rightarrow+\infty: & \text { weak coupling } \\
\operatorname{Re} \tau \rightarrow-\infty: & \text { strong coupling }
\end{array}
$$

- Quantum exact formula for sphere partition function as sum of finite-dimensional Mellin-Barnes integral

$$
Z_{S^{2}}(\tau) \sim \sum_{\substack{\text { magnetic } \\ \text { charges }}} \int_{\mathfrak{h}} d^{\operatorname{dimh}} \sigma Z_{\text {class }}(\tau, \sigma, k) Z_{1 \text {-loop }}(\sigma, k)
$$

Strong evidence of (strong-weak) duality:

$$
Z_{S^{2}}\left(S S S M_{1,12,6}, \tau\right)=Z_{S^{2}}\left(S S S M_{2,9,6},-\tau\right)
$$

Summary and Outlook

- Key results:
(1) Detailed and explicit connection of GLSM correlators to target space quantum cohomology
(2) Universal formulas for Picard-Fuchs operators in terms of correlators
(3) Strong-weak coupling duality between pair of non-Abelian GLSMs
- Room for future work:
(1) More systematic understanding of dualities, especially for non-Abelian models
(2) Going backwards: Reconstruct GLSM from given a Picard-Fuchs operator

Thank you for your attention!

Questions?

Backup

A-twist and Q-dependence of Correlators

- Study correlation functions of scalars σ in vector multiplet V on A-twisted two-sphere with off shell supergravity background

Killing vector field K_{μ}
Graviphoton background $C_{\mu}=\frac{\epsilon}{2} K_{\mu}$

- Dependence of correlators $\left\langle\sigma_{N}^{n} \sigma_{S}^{m}\right\rangle(Q)$ on Q determined by sum of matter charges $S_{Q}=\sum$ charges

Witten, 93; Morrison, Plesser, 94

$$
\begin{array}{ll}
S_{Q}>0: & \text { polynomial in } Q \\
S_{Q}=0: & \text { rational in } \mathrm{Q} \\
S_{Q}<0: & \text { polynomial in } Q^{-1}
\end{array}
$$

Rational functions g_{ℓ} from GLSM spectrum

- Starting point in derivation of correlator relations are rational functions g_{ℓ}
- They follow immediately from GLSM matter spectrum
(1)

	G-rep.	R-charge	twisted mass
Φ_{α}	ρ_{α}	\mathfrak{q}_{α}	\mathfrak{m}_{α}

(2)

$$
g_{\ell}(w)=\prod_{\alpha} \frac{\prod_{s=1}^{\infty} w \cdot \rho_{\alpha}+\mathfrak{m}_{\alpha}+\epsilon\left(1-\frac{\mathfrak{q}_{\alpha}}{2}-s\right)}{\prod_{s=1+\rho_{\alpha} \cdot \ell}^{\infty} w \cdot \rho_{\alpha}+\mathfrak{m}_{\alpha}+\epsilon\left(1-\frac{\mathfrak{q}_{\alpha}}{2}-s\right)}
$$

Geometric Interpretation of Correlators

- To geometric target space \mathcal{X} associate Givental I-function $I_{\mathcal{X}}$
(1) Valued in vertical cohomology, $I_{\mathcal{X}}(Q, \epsilon) \in H^{\text {even }}(\mathcal{X})$
(2) Governs quantum cohomology of $\mathcal{X} /$ OPE of σ fields
(3) Generates correlators: $\left\langle\sigma_{N}^{n} \sigma_{S}^{m}\right\rangle=\int_{\mathcal{X}}(-\epsilon \Theta)^{n} I_{\mathcal{X}}(Q,-\epsilon) \cup(\epsilon \Theta)^{m} I_{\mathcal{X}}(Q, \epsilon)$ Ueda, Yoshida, 16; Kim et al., 16
- Differential operators $\boldsymbol{R}_{\mathbf{S}}$ annihilate Givental I-function

$$
0=R_{S}=\int_{\mathcal{X}}(-\epsilon \Theta)^{n} I_{\mathcal{X}}(Q,-\epsilon) \cup[\underbrace{\sum_{m} c_{m}(\epsilon \Theta)^{m}}_{\boldsymbol{R}_{\mathbf{S}}} I_{\mathcal{X}}(Q, \epsilon)]
$$

Result

Differential operators $\boldsymbol{R}_{\mathbf{S}}$ annihilate Givental I-function, $\boldsymbol{R}_{\mathbf{S}} \mathcal{I}_{\mathcal{X}}=0$, and thus govern target space quantum cohomology

Skew Symplectic Sigma Models $S_{S S M_{k, m, n}}$

- Class of skew symplectic sigma models $S S S M_{k, m, n}$
(1) Gauge group $G=U(1) \times U S p(2 k) \quad \Rightarrow \quad 1$ Kähler modulus τ
(2) Matter spectrum

Chiral multiplet	ρ_{α}	\mathfrak{q}_{α}	\mathfrak{m}_{α}
$P_{[i j]}, 1 \leq i<j \leq n$	$\mathbf{1}_{-2}$	2	0
Q	$\mathbf{2 k}_{-3}$	2	0
$\phi_{a}, a=1, \ldots, m$	$\mathbf{1}_{2}$	0	0
$X_{i}, i=1, \ldots, n$	$\mathbf{2 k}_{1}$	0	0

- Integers (k, m, n) determine axial anomaly and central charge

Conformal models with smooth $C Y_{3}$ target space ($c=9$) $S_{S S M}^{1,12,6}$ and $S_{2 S M}^{2,9,6}$

Superpotential and Target Space

- Superpotential: Most general holomorphic, gauge invariant function of R-charge 2, here

$$
\begin{aligned}
& W_{z}=\operatorname{tr}\left[P A(\phi)+P X^{T} \epsilon X\right]+B(\phi) Q^{T} \epsilon X \\
& \text { with } A(\phi)_{[i j]}=A_{[i j]}^{a} \phi_{a}, \quad B(\phi)_{i}=B_{i}^{a} \phi_{a}, \quad \epsilon=\left(\begin{array}{cc}
0 & \mathbf{1}_{k \times k} \\
-\mathbf{1}_{k \times k} & 0
\end{array}\right)
\end{aligned}
$$

- Complex structure moduli: $A_{[i j]}^{a}$ and B_{i}^{a}
- Determine semi-classical target space $\mathcal{X}_{\boldsymbol{\tau}, \boldsymbol{z}}$ in three steps:
(1) Write down D-terms and F-terms
(2) Solve $D(\tau)=F=0$ for $\operatorname{Re} \tau \gg 0$ or $\operatorname{Re} \tau \ll 0$
(3) For consistency: No unbroken non-Abelian subgroup $G^{\prime} \subset G$

$S_{S S M_{k, m, n}}$ Phase $\operatorname{Re} \tau \gg 0$: Weak Coupling

- Solving $D(\tau)=F=0$ for $\operatorname{Re} \tau \gg 0$ gives

Semi-classical target space variety $\operatorname{Re} \tau \gg 0$

$$
\mathcal{X}_{k, m, n}=\left\{\phi \in \mathbb{C P}^{m-1} \mid \text { rk } A(\phi) \leq 2 k \text { and } A(\phi) \cdot B(\phi)=0\right\}
$$

- Heuristic (incomplete) derivation:
(1) Abelian D-term: Not all $\phi_{a}=0 \Rightarrow \phi \in \mathbb{C P}^{m-1}$
(2) F-term for $P_{[i j]}$: $\quad A(\phi)=-X^{\top} \epsilon X$ with $X=\left(X_{1}, \ldots, X_{n}\right)$

$$
\Rightarrow \operatorname{rk} A(\phi) \leq \operatorname{rk} X \leq 2 k
$$

(3) F-term for $Q: \quad F_{Q}=\epsilon X \cdot B(\phi)=0$

$$
\Rightarrow-X^{\top} F_{Q}=A(\phi) \cdot B(\phi)=0
$$

$S_{S S M}^{k, m, n}$ Phase $\operatorname{Re} \tau \ll 0$: Strong Coupling

- Gauge group broken to non-Abelian subgroup USp(2k)
(1) Strong coupling dynamics in infrared
(2) Dual description: Weakly coupled mesons
- For SSSM $_{k, m, n}$:

Semi-classical target space variety $\operatorname{Re} \tau \ll 0$
$\mathcal{Y}_{k, m, n} \simeq \mathcal{X}_{\tilde{k}, \tilde{m}, n} \quad$ with $\quad \tilde{k}=\frac{n}{2}-k, \quad \tilde{m}=\frac{n(n+1)}{2}-m, \quad n$ even
In particular: 1) $\mathcal{Y}_{1,12,6} \simeq \mathcal{X}_{2,9,6}$ and \quad 2) $\mathcal{Y}_{2,9,6} \simeq \mathcal{X}_{1,12,6}$

Phase Structure and Conjecture of Duality

Sphere Partition Function Supports Duality Proposal

Strong evidence of duality:

$$
Z_{S^{2}}\left(\operatorname{SSSM}_{1,12,6}, \tau\right)=Z_{S^{2}}\left(\operatorname{SSSM}_{2,9,6},-\tau\right)
$$

- In addition we obtained:
(1) Geometric invariants of Calabi-Yau target spaces (from Kähler potential)

	$\mathcal{X}_{1,12,6}=\mathcal{Y}_{2,9,6}$	$\mathcal{Y}_{1,12,6}=\mathcal{X}_{2,9,6}$
Degree	33	21
Euler characterstic	-102	-102
Genus 0 GW invariants	$252,1854 \ldots$	$387,4671 \ldots$

(2) Combinatorial algorithm to evaluate Mellin-Barnes integrals of any dimension

