A duality network of linear quivers

Frederic Brünner

SUSY gauge theories, their dualities and deformations
Bern, July 2016
, Particles and Interactions

Conjecture:
Supersymmetric QCD is dual to a large number of linear quiver gauge theories.

Based on:

FB, V.P. Spiridonov, 1605.06991
FB, V.P. Spiridonov, to appear

Supersymmetric QCD:

- SUSY gauge theory with gauge group $S U\left(N_{c}\right)$ and $S U\left(N_{f}\right) \times S U\left(N_{f}\right) \times U(1)_{B}$ flavour symmetry
- $\mathcal{N}=1$ supersymmetry \rightarrow R-symmetry $U(1)_{R}$
- Axial $U(1)$ anomalous
- N_{f} quarks and squarks in chiral multiplets \mathbf{Q}^{i} and $\tilde{\mathbf{Q}}_{i}$
- $S U\left(N_{c}\right)$ gauge field part of vector multiplet \mathbf{V}

	$S U\left(N_{c}\right)$	$S U\left(N_{f}\right)$	$S U\left(N_{f}\right)$	$U(1)_{B}$	$U(1)_{R}$
\mathbf{Q}^{i}	f	f	1	1	$\left(N_{f}-N_{c}\right) / N_{f}$
$\tilde{\mathbf{Q}}_{i}$	\bar{f}	1	\bar{f}	-1	$\left(N_{f}-N_{c}\right) / N_{f}$
\mathbf{V}	adj	1	1	0	1

Gauge invariant operators ("hadrons"):

$$
\begin{aligned}
M_{j}^{i} & =\mathbf{Q}^{i} \tilde{\mathbf{Q}}_{j} \\
B^{i_{1}, \ldots, i_{N_{c}}} & =\mathbf{Q}^{i_{1}} \cdots \mathbf{Q}^{i_{N_{c}}} \\
B_{i_{1}, \ldots, i_{N_{c}}} & =\tilde{\mathbf{Q}}_{i_{1}} \cdots \tilde{\mathbf{Q}}_{i_{N_{c}}}
\end{aligned}
$$

Seiberg, '94:
$3 N_{c} / 2<N_{f}<3 N_{c}: \quad \exists$ IR fixed point \rightarrow SCFT
\rightarrow dual description with gauge group $S U\left(N_{f}-N_{c}\right)$
$\mathrm{eSQCD} \Longleftrightarrow \mathrm{mQCD}$
\rightarrow Seiberg duality

Matter content of mSQCD:

	$S U\left(\tilde{N}_{c}\right)$	$S U\left(N_{f}\right)$	$S U\left(N_{f}\right)$	$U(1)_{B}$	$U(1)_{R}$
\mathbf{q}^{i}	f	\bar{f}	1	N_{c} / \tilde{N}_{c}	N_{c} / N_{f}
$\tilde{\mathbf{q}}_{i}$	\bar{f}	1	f	$-N_{c} / \tilde{N}_{c}$	N_{c} / N_{f}
\mathbf{V}	adj	1	1	0	1
\mathbf{M}	1	f	\bar{f}	0	\tilde{N}_{c} / N_{f}

for $\tilde{N}_{c}=N_{f}-N_{c}$

Checks?

- 't Hooft anomaly matching ('t Hooft, '79)
- Chiral anomalies of different descriptions should match
- Satisfied for $S U\left(N_{f}\right) \times S U\left(N_{f}\right) \times U(1)_{B} \times U(1)_{R}$ of Seiberg dual theories!
- BPS state counting
- Superconformal index should be independent of description
- Also satisfied, but not obvious - hard to prove!

Checks?

- 't Hooft anomaly matching ('t Hooft, '79)
- Chiral anomalies of different descriptions should match
- Satisfied for $S U\left(N_{f}\right) \times S U\left(N_{f}\right) \times U(1)_{B} \times U(1)_{R}$ of Seiberg dual theories!
- BPS state counting
- Superconformal index should be independent of description
- Also satisfied, but not obvious - hard to prove!
$\mathcal{N}=1$ SUSY generated by $Q^{\alpha}, \tilde{Q}^{\dot{\alpha}}$, four real charges
BPS states preserve only part of the supersymmetry
\rightarrow also known as short multiplets/representations

How to count them?

Kinney, Maldacena, Minwalla, Raju, '05:
Countable in SCFTs by computing the superconformal index (SCI):

$$
\mathcal{I}=\operatorname{Tr}(-1)^{\mathcal{F}} e^{-\beta H} p^{\frac{R}{2}+J_{R}+J_{L}} q^{\frac{R}{2}+J_{R}-J_{L}} \prod_{i} z_{i}^{G_{i}} \prod_{j} y_{j}^{F_{j}}
$$

$R .$. R-charge, $\quad \beta \ldots$ chemical potential $J_{L}, J_{R} \ldots$ Cartan generators of $S U(2)_{L} \times S U(2)_{R}$ $G_{i}, F_{j} \ldots$ generators of gauge and flavour groups $p, q, z_{i}, y_{j} \ldots$ complex fugacities

Contributions only from $H=E-2 J_{L}-\frac{3}{2} R=0$

Properties

- Only BPS states contribute
- Not affected by SUSY preserving deformations \rightarrow invariant under RG flow!
- Topological quantity
- Only depends on group-theoretic information

Gauge invariance: rewritten as

$$
\mathcal{I}(p, q, y)=\int_{G} d \mu(g) \exp \left(\sum_{n=1}^{\infty} \frac{1}{n} i\left(p^{n}, q^{n}, y^{n}, z^{n}\right)\right)
$$

Single particle index $i(p, q, y, z)$ depends on characters $\chi_{a d j}, \chi_{f}, \chi_{\bar{f}}, \ldots$
Information easily available!

In principle easy recipe for checking dualities:
(1) Deduce representations and their characters from field content
(2) Compute SCl for both theories
(3) Indices match if theories actually dual

In practice hard:

- Integrals computable exactly only in rare cases
- Identification of integrals hard to prove

Dolan, Osborn, '08:
Solution: rewrite SCls as elliptic hypergeometric integrals
Many integral identities known and applicable to SCIs!
\rightarrow Fruitful interchange between mathematics and physics

SCI of eSQCD:

$$
\mathcal{I}_{\mathrm{eSQCD}}=I_{n}^{(m)}(\mathbf{s}, \mathbf{t})=\kappa_{n} \int_{\mathbb{T}^{n}} \frac{\prod_{j=1}^{N_{c}} \prod_{l=1}^{N_{f}} \Gamma\left(s_{l} z_{j}, t_{l}^{-1} z_{j}^{-1}\right)}{\prod_{1 \leq j<k \leq N_{c}} \Gamma\left(z_{j} z_{k}^{-1}, z_{j}^{-1} z_{k}\right)} \prod_{k=1}^{N_{c}-1} \frac{d z_{k}}{2 \pi i z_{k}},
$$

with $N_{c}=n+1, N_{f}=m+n+2$ and \mathbf{s}, \mathbf{t} contain flavours

$$
\Gamma(z):=\Gamma(z ; p, q)=\prod_{j, k=0}^{\infty} \frac{1-z^{-1} p^{j+1} q^{k+1}}{1-z p^{j} q^{k}}
$$

Field content can be read off directly!

	$S U\left(N_{c}\right)$	$S U\left(N_{f}\right)$	$S U\left(N_{f}\right)$	$U(1)_{B}$	$U(1)_{R}$
\mathbf{Q}^{i}	f	f	1	1	$\left(N_{f}-N_{c}\right) / N_{f}$
$\tilde{\mathbf{Q}}_{i}$	\bar{f}	1	\bar{f}	-1	$\left(N_{f}-N_{c}\right) / N_{f}$
\mathbf{V}	adj	1	1	0	1

$$
I_{n}^{(m)}(\mathbf{s}, \mathbf{t})=\int_{\mathbb{T}^{N_{c}-1}} \frac{\prod_{j=1}^{N_{c}} \prod_{l=1}^{N_{f}} \Gamma\left(s_{l} z_{j}, t_{l}^{-1} z_{j}^{-1}\right)}{\prod_{1 \leq j<k \leq N_{c}} \Gamma\left(z_{j} z_{k}^{-1}, z_{j}^{-1} z_{k}\right)} \prod_{k=1}^{N_{c}-1} \frac{d z_{k}}{2 \pi i z_{k}}
$$

Characters: $\chi_{S U(N), f}=\sum_{i}^{N} x_{i}, \chi_{S U(N), \bar{f}}=\sum_{i}^{N} x_{i}^{-1}$,
$\chi_{S U(N), a d j}=\sum_{1 \leq i, j \leq N} x_{i} x_{j}^{-1}-1$

	$S U\left(\tilde{N}_{c}\right)$	$S U\left(N_{f}\right)$	$S U\left(N_{f}\right)$	$U(1)_{B}$	$U(1)_{R}$
\mathbf{q}	f	\bar{f}	1	N_{c} / \tilde{N}_{c}	N_{c} / N_{f}
$\tilde{\mathbf{q}}$	\bar{f}	1	f	$-N_{c} / \tilde{N}_{c}$	N_{c} / N_{f}
\mathbf{V}	adj	1	1	0	1
\mathbf{M}	1	f	\bar{f}	0	\tilde{N}_{c} / N_{f}

$$
\begin{aligned}
\mathcal{I}_{\mathrm{mSQCD}} & =\prod_{j, k=1}^{N_{f}} \Gamma\left(t_{j} s_{k}\right) \int_{\mathbb{T}^{\tilde{N}_{c}-1}} \frac{\prod_{j=1}^{\tilde{N}_{c}} \prod_{l=1}^{N_{f}} \Gamma\left(s^{\prime}{ }_{l} z_{j}, t_{l}^{\prime-1} z_{j}^{-1}\right)}{\prod_{1 \leq j<k \leq \tilde{N}_{c}} \Gamma\left(z_{j} z_{k}^{-1}, z_{j}^{-1} z_{k}\right)} \prod_{k=1}^{\tilde{N}_{c}-1} \frac{d z_{k}}{2 \pi i z_{k}} \\
& =\prod_{j, k=1}^{N_{f}} \Gamma\left(t_{j} s_{k}\right) I_{m}^{(n)}\left(\mathbf{s}^{\prime}, \mathbf{t}^{\prime}\right)
\end{aligned}
$$

Rains, '03:

$$
I_{n}^{(m)}(\mathbf{s}, \mathbf{t})=\prod_{j, k=1}^{n+m+2} \Gamma\left(t_{j} s_{k}\right) I_{m}^{(n)}\left(\mathbf{s}^{\prime}, \mathbf{t}^{\prime}\right)
$$

Proves matching of SCls for Seiberg duality, i.e.

$$
\mathcal{I}_{\mathrm{eSQCD}}=\mathcal{I}_{\mathrm{mSQCD}}
$$

Similar proofs for countless other SCls

Strategy so far:

(1) Identify dual theories (e.g. Seiberg duality)
(2) Extract group theoretic informaton (representations and characters)
(3) Compute SCls
(9) Use theory of elliptic hypergeometric functions to prove their equivalence

Possible to turn this around?

New Strategy:

(1) Derive new integral identities
(2) Identify integrals as SCls
(3) Read off field content
(9) Conjecture new dualities

Spiridonov, '08, FB, Spiridonov, 1605.06991:
Recursion relation for elliptic hypergeometric integrals on A_{n} root system:

$$
\begin{gathered}
I_{n}^{(m+1)}(\mathbf{s}, \mathbf{t})=\mathbf{Q}_{n}^{m} I_{n}^{(m)}(\tilde{\mathbf{s}}, \mathbf{t}) \\
\mathbf{Q}_{n}^{m}:=\zeta(v) \times \int_{\mathbb{T}^{n}} \frac{\prod_{j=1}^{n+1} \Gamma\left(\frac{t_{n+m+3} w_{j}}{v^{n}}\right) \prod_{l=1}^{n+2} \Gamma\left(\frac{s_{l}}{v w_{j}}\right)}{\prod_{1 \leq j<k \leq n+1} \Gamma\left(w_{j} w_{k}^{-1}, w_{j}^{-1} w_{k}\right)} \prod_{k=1}^{n} \frac{d w_{k}}{2 \pi \mathrm{i} w_{k}} \\
\zeta(v)=\frac{\kappa_{n}}{\Gamma\left(v^{n+1}\right)} \prod_{l=1}^{n+2} \frac{\Gamma\left(t_{n+m+3} s_{l}\right)}{\Gamma\left(v^{-n-1} t_{n+m+3} s_{l}\right)} \\
\tilde{\mathbf{s}}=\left(v w_{1}, \ldots, v w_{n+1}, s_{n+3}, \ldots, s_{n+m+3}\right)
\end{gathered}
$$

L.h.s.: SCI of SQCD, r.h.s: SCI of linear quiver!

Flavour symmetries different from SQCD, subgroups!

$$
\begin{aligned}
& S U\left(N_{f}-N_{c}-1\right) \times S U\left(N_{c}+1\right) \times U(1) \subset S U\left(N_{f}\right) \\
& S U\left(N_{f}-1\right) \times U(1) \subset S U\left(N_{f}\right)
\end{aligned}
$$

Superpotential?

	$S U\left(N_{c}\right)_{1}$	$S U\left(N_{c}\right)_{2}$	$S U\left(N_{f}-N_{c}-1\right)$	$S U\left(N_{c}+1\right)$	$S U\left(N_{f}-1\right)$	$U(1)$	$U(1)$	$U(1)_{B}$	$U(1)_{R}$
\mathbf{A}_{1}	1	f	1	1	1	$\frac{1}{N_{c}}$	$-\frac{N_{c}-1}{N_{c}}$	N_{c}	$\frac{N_{f}-N_{c}-\left(N_{c}-2\right)\left(N_{f}-N_{c}-2\right)}{2 N_{f}}$
\mathbf{A}_{2}	1	\bar{f}	1	\bar{f}	1	$-\frac{1}{N_{c}}$	$-\frac{1}{N_{c}\left(N_{c}+1\right)}$	0	$\frac{1}{N_{f}}$
\mathbf{A}_{3}	f	1	1	1	f	$-\frac{1}{N_{f}-1}$	0	1	$\frac{N_{f}-N_{c}}{2 N_{f}}$
\mathbf{A}_{4}	\bar{f}	f	1	1	1	$\frac{1}{N_{c}}$	$\frac{1}{N_{c}}$	-1	$\frac{N_{f}-N_{c}-2}{2 N_{f}}$
\mathbf{A}_{5}	\bar{f}	1	\bar{f}	1	1	0	$-\frac{1}{N_{f}-N_{c}-1}$	-1	$\frac{N_{f}-N_{c}}{2 N_{f}}$
\mathbf{M}_{1}	1	1	1	1	1	-1	1	N_{c}	$1+\frac{N_{c}\left(N_{c}+2-N_{f}\right)}{2\left(N_{f}-1\right)}$
\mathbf{M}_{2}	1	1	1	f	1	1	$\frac{1}{N_{c}+1}$	0	$\frac{1}{N_{f}}$
\mathbf{M}_{3}	1	1	1			1	-1	$-\frac{1}{N_{c}+1}$	$-N_{c}$

Recursion can be iterated!
Example: SQCD with $N_{c}=3$ and $N_{f}=6: \mathcal{I}_{\mathrm{eSQCD}}=I_{2}^{(2)}$
Recursion relation leads to

$$
\begin{aligned}
I_{2}^{(2)} & =\mathbf{Q}_{2}^{1} I_{2}^{(1)} \\
& =\mathbf{Q}_{2}^{1} \mathbf{Q}_{2}^{0} I_{2}^{(0)}
\end{aligned}
$$

Two distinct linear quivers!

New dualities can be combined with Seiberg duality, schematically:

$$
\begin{array}{ll}
I_{n}^{(m)}=c_{m}^{n} I_{m}^{(n)} & \mathrm{S} \\
I_{n}^{(m+1)}=\mathbf{Q}_{n}^{m} I_{n}^{(m)} & \mathrm{Q}
\end{array}
$$

Leads to a large duality web of linear quivers dual to SQCD!
True both for eSQCD and mSQCD.

Duality network for SQCD with $N_{c}=3$ and $N_{f}=6$:

Summary:

- SCls serve as a check for dualities, e.g. Seiberg duality, AdS/CFT, ...
- SCls can be written in terms of elliptic hypergeometric functions
- SCls of dual theories can be proven to be identical
- We have used new identities to deduce new dualities and gathered evidence for the statement that

SQCD is dual to a large number of linear quiver gauge theories.

Outlook:

- Gain better understanding of these dualities
- Find connections to other (linear) quivers
- Embed the dualities in string theory
- Explore possible relations to topological QFT and 2d lattice models
- Find more related dualities (FB, Spiridonov, to appear)

