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Supersymmetric regularization

® Recently: many new exact results in supersymmetric QF T
mainly thanks to localization

® need to renormalize UV divergences

=» crucial to use a regularization scheme that preserves supersymmetry

€ One way to assess this : check susy Ward identities at the end

® Even if regularization is supersymmetric, there may be ambiguities,

=» important to classify them in order to extract physically meaningful result

r

Example Gerchkovitz, Gomis, KomargodskKi

Partition function of N=2 SCFT’s on §4 as a function of marginal couplings 7, T
computes the Kahler potential K (7, 7) on the conformal manifold.
Ambiguous by F(7) + F(7) : correspond to Kéhler transformations.

~
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<+«—> Hopf surfaces ‘H, , with complex structure parameters p, q

® Supersymmetric partition function Z[H . ,] does not depend on Hermitian metric

and is a holomorphic function of the complex structure parameters
Closset, Dumitrescu, Festuccia, KomargodsKi

susy Ward identities : dpgermitian(—10g Z) = 0

® |ocalizationyields: Z[H, ,| = e_}-(p"”I(p, q) Assel, D.C., Martelli
only depends on p, ¢ \ superconformal index
although we allowed for a general metric Z(p,q) = tr |(=1)Fp/ T~ H ¢/~ 7~ %]

¢/ susy Ward identities fugacities



supersymmetric Casimir energy

Assel, D.C., Martelli
Z[Hp,q = e_}-(p’q)I(P ,q)

/ superconformal index

N
f(p, q) — /BEsusy(bla bz) p = e_fabl . q = e—ﬁbz
2 2 (b1 + b2)°
Esusy = - (b bs) (a — c) - 3¢c—2a
Yy 3 ( 1+ 2) ( ) | 27 blbz ( )
k» supersymmetric Casimir energy a,c central charges
J

Sp
7 = /nge—s[dﬂ — Tre PH O X

7 ~ e PFPcasimir a9 3 oo (projects to ground state)



The importance of being supersymmetric

® Zion—susy iS ambiguous due to local counterterm :
— log Znon—susy + b /d4$ g R?

v
#£0on S'x S°

-» Casimir energy on S* x S° is scheme-dependent

® In susy case:

ambiguities are gauge-invariant (new minimal) supergravity actions of dim = 4

¢ they are all F-terms
¢ F-terms vanish on susy backgrounds with 2 supercharges of opposite R-charge

—log Zsusy + b / d*z./g [(R + GVMVM)2 — SFM,,F’“’} + fermions
\ 4

=0 on S' x §3!




The importance of being supersymmetric

¢ If an N=1 SCFT is defined on a supersymmetric background

preserving two Euclidean supercharges, and using new minimal sugra

¢ then the dependence of the supersymmetric partition function

on the background is free of ambiguities

2 (by + b2)?
27  bibs

IS an intrinsic observable of the SCFT

(3c—2a)

2
9 Esusy — 5 (bl + b2) (a — C) |

1

# superalgebra implies the BPS condition FEgsu.sy = —(R) onround S5 x S;
r

=?» vacuum charged!



AN i strlng theory;
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Holographic dictionary

M4 - 8M5
sources for e.m. tensor multiplet boundary conditions for gravity multiplet
g, A— %V gPulk, Abulk minimal is enough
at Iarge Nc — log Z[M4] + Son—shell [M5]

w203 /K2 5d grav. coupling

central charges c=a

Casimir energy grav. energy of a solution dual to CFT vacuum

R-charge charge of the solution under graviphoton

match??




Holographic Casimir energy

ZHp,q = e_}-(p’q)I(PaQ)

/ superconformal index

N
f(pv Q) — /BEsusy(bla b2)
2 2 (b1 + b2)”®
Eo v = — (b b>) (a — ¢) + 3c—2a
=3 0tb2)(a—e) + = )
dominates Z at large Nc =» prediction for dual supergravity solutions )
® There should be a family of susy solutions with O Ms = H,, , such that :
( )
2 (bl —|— b2)3 71'263
S ralMs| = —
5d sug a[ 5] 27/6 blbz Iig
U J

c=a="7m%/Ks



Holographic Casimir energy

ZHp,q = e_}-(p’q)I(PaQ)

/ superconformal index

N
f(pv Q) — /BEsusy(bla b2)
2 2 (b1 + b2)®
Eo v = — (b b>) (a — ¢) + 3c—2a
=3 0tb2)(a—e) + = )
dominates Z at large Nc =» prediction for dual supergravity solutions )
® There should be a family of susy solutions with O Ms = H,, , such that :
( )
2 (bl —+ b2)3 71'263 16,371'253
S5d sugra[M5] — _,6 5 — 5
27 blbz Kr \ 27 r Ky
U J
\ 1
c=a=7nl/K? by = bz = — round SéXSf

I”i



Holographic renormalization

On-shell action a priori divergent

1 12 .
S — —— d5$\/§ (R[g] . F2 | £2> ANFANF 5d SupergraVI’[y

2 .
22 J . action Spuix
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Holographic renormalization

On-shell action a priori divergent

1 12 .
S =_— d°z./g (R[g] —F* + — ) AANFAF 5d supergravity
22 S, £ action Spuik
1 ) 3 ¢ .
+ — [ d*zvh( K — - — —RIh] divergent counterterms
K,5 OMsx E 4
1
—+ ? d4£13\/E (AlRijkl [h]2 —+ )\er,;j [h]2 —+ )\3R[h]2 -+ )\4F7,23)
5 J OMs

finite boundary terms =» parameterize different schemes

¢ Forround Sé X S,ff’ the most natural candidate is pure Anti de Sitter space
ChOOSing A1 =Xo=A3 =0

_3p 23 16 3 w243

4 r K2 27 r KZ

S

does NOT match the susy QFT result!

...could think about adjusting the \’s ... but ...



Holographic renormalization

1 0S

® = 4° ic R- ic R-
\/gbidy 5A?dy J~ holographic R-current =* holographic R-charge ( R)

however unavoidably for AdS5 : (R) = 0

= (E) # 3(R) BPS relation violated

unless one tunes \’s such that

l")

(E) = -(R) = 0 misses Casimir energy

...something is not working here



New supergravity solutions
Benetti Genolini, D.C., Martelli, Sparks

We constructed a very general AIAdS solution perturbatively near the boundary

. dp? 1 ~
gPulk — 5 | > [gbdy + g p? + (9(4) —|—g(4)10gp2) p4_|_...}

® boundary metric:

g°Y = dr? + (dy + a)? + 4e*dzdz

with da = iue“dz Adz \
" -

’u,(z,Z) ) ’LU(Z, Z)
arbitrary

describes S! x S° topology (and more)

® graviphoton field A*"¥ also determined

Abdy _— _\/Lg [éu dr + iu(dw +a) + i(azw dz — 0, wdz)

® 4 free subleading functions k1(z, 2), k2(z,2), k3(2,2), ka(z, Z)



New supergravity solutions

® non-trivial:
susy involves solving 6th-order equation for auxiliary Kahler metric
2 1 2 2 1 2 m N
v EV R + ngquq— 5R + V" (Rnn0"R) = 0

D.C., Lorenzen, Martelli

A bulk metric has complex components (but real in Lorentzian signature)

A on-shell action gauge-dependent due to Chern-Simons term /A ANF ANF

=» crucial to fix the gauge properly

¢ Killing spinors independent of time

¢ gauge field globally well-defined



Supersymmeiric holographic renormalization

Vary the boundary data keeping complex structure on & M fixed

<«—> vary the functions u(z, 2) , w(z,2z) with globally def. variations

0SS = Md4a:\/gbdy (%T":jég,z.dy —|—j"35A?dy)
A There is no choice of A1, A2, A3, A4 suchthat 6,5 = 0 = §,S

=» Holographic renormalization violates field theory susy Ward identities!



Supersymmeiric holographic renormalization

Vary the boundary data keeping complex structure on & M fixed

<«—> vary the functions u(z, 2) , w(z,2z) with globally def. variations

0SS = Md4a:\/gbdy (%T":jég,z.dy —|—j"35A?dy)
A There is no choice of A1, A2, A3, A4 suchthat 6,5 = 0 = §,S
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r N
new boundary term AS,..., such that Ssusy = S + AS,ew satisfies §Ssusy = 0

1 S is taken with
L - Abdy
b —= 721\/5 (u3—|—4u w)iewdz/\di/\(Zdw—l—idT)

U = 21.}32( 19u* — 48u? w) d*xzy\/gPd




Supersymmeiric holographic renormalization

We propose that Ssusy [ Ms5] = S[Ms] + AShew|[M4]
should be identified with the SCFT —log Zssy |[M4]

Although we don’t know the solution in the
interior, under topological assumption
we can actually evaluate the on-shell action

shrinks
smoothly

¢ Shuik reduces to a boundary term

¢ 4 subleading functions ki(z, 2), k2(z,2), k3(z,2), ka(z,Z) drop out !
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Supersymmeiric holographic renormalization

b1 + b2

872
& b1 b-

A
v? 4 /| bd £’
Y 27 J i, (2d) Ke



Supersymmeiric holographic renormalization

from APYY = ... 4+ ~dy
b b
Y= %(bl + b2) 8723 — T 02
\ blbz

A
v? 4 /| bd £’
Y 27 J i, (2d) Ke



Supersymmeiric holographic renormalization

from APYY = ... 4+ ~dy

b b
7:%(b1+b2) 823 Lt O

\ bl bz

A
v? 4 /| bd £’
Y 27 J i, (2d) Ke

2 IB(bl —|— b2)3 71'2£3
27 blbz K,g

/ /3 Esusy

5Ssusy

. 1 g
also computed (R) via Tama AP = 4 ¢/ BPS relation
g i




Conclusions
® Standard holographic renormalization in 5d violates susy

® |dentified boundary terms A S, that restore susy Ward identities

® Constructed asymptotic solutions such that

2 IB(bl —I— b2)3 71'2£3
27 blbz K,g

Seusy = S + ASpew = ¢/ field theory

? AS,ew in covariant form?

? which boundary fields involved?w

First principle derivation such that bulk + boundary action is supersymmetric?

® does AS, .. have consequences for susy AdS5 black holes?
= Zaffaronis talk



.. thank you !



