ON SUPERSYMMETRIC REGULARIZATION in FIELD THEORY and HOLOGRAPHY

Davide Cassani

LPTHE — Université Paris 6

Supersymmetric theories, dualities and deformations
Bern - 5/7/2016

Based on: 1606.02724 with Benetti Genolini, Martelli, Sparks + to appear

+ previous work with Assel, Di Pietro, Komargodski, Lorenzen, Martelli

Supersymmetric regularization

- Recently: many new exact results in supersymmetric QFT mainly thanks to localization
- need to renormalize UV divergences

\rightarrow crucial to use a regularization scheme that preserves supersymmetry
- One way to assess this : check susy Ward identities at the end
- Even if regularization is supersymmetric, there may be ambiguities,
\rightarrow important to classify them in order to extract physically meaningful result

Example

Gerchkovitz, Gomis, Komargodski
Partition function of $\mathrm{N}=2$ SCFT's on S^{4} as a function of marginal couplings $\tau, \bar{\tau}$ computes the Kähler potential $K(\tau, \bar{\tau})$ on the conformal manifold. Ambiguous by $\boldsymbol{F}(\boldsymbol{\tau})+\overline{\boldsymbol{F}}(\bar{\tau})$: correspond to Kähler transformations.

Field theory side

- Consider a 4d, $\mathrm{N}=1 \mathrm{SCFT}$. can be placed on a space with topology preserving some susy

\longleftrightarrow Hopf surfaces $\mathcal{H}_{p, q}$ with complex structure parameters p, q

Field theory side

- Consider a $4 \mathrm{~d}, \mathrm{~N}=1 \mathrm{SCFT}$. can be placed on a space with topology preserving some susy

\longleftrightarrow Hopf surfaces $\mathcal{H}_{p, q}$ with complex structure parameters p, q
- Supersymmetric partition function $Z\left[\mathcal{H}_{p, q}\right]$ does not depend on Hermitian metric and is a holomorphic function of the complex structure parameters

Closset, Dumitrescu, Festuccia, Komargodski
susy Ward identities : $\delta_{\text {Hermitian }}(-\log Z)=0$

Field theory side

- Consider a $4 d, \mathrm{~N}=1$ SCFT.
can be placed on a space with topology preserving some susy

\longleftrightarrow Hopf surfaces $\mathcal{H}_{p, q}$ with complex structure parameters p, q
- Supersymmetric partition function $Z\left[\mathcal{H}_{p, q}\right]$ does not depend on Hermitian metric and is a holomorphic function of the complex structure parameters

Closset, Dumitrescu, Festuccia, Komargodski
susy Ward identities : $\delta_{\text {Hermitian }}(-\log Z)=0$

- Localization yields: $Z\left[\mathcal{H}_{p, q}\right]=\mathrm{e}^{-\mathcal{F}(p, q)} \mathcal{I}(p, q) \quad$ Assel, D.C., Martelli only depends on p, q although we allowed for a general metric
\checkmark susy Ward identities

$$
\mathcal{I} \text { superconformal index }
$$

supersymmetric Casimir energy

$$
Z\left[\mathcal{H}_{p, q}\right]=\mathrm{e}^{-\mathcal{F}(p, q)} \mathcal{I}(p, q)
$$

superconformal index

$$
\begin{aligned}
\mathcal{F}(p, q) & =\beta E_{\text {susy }}\left(b_{1}, b_{2}\right) \\
E_{\text {susy }} & =\frac{2}{3}\left(b_{1}+b_{2}\right)(a-c)+\frac{2}{27} \frac{\left(b_{1}+b_{2}\right)^{3}}{b_{1} b_{2}}(3 c-2 a) \\
& \quad a, c \text { central charges }
\end{aligned}
$$

$Z=\int \mathcal{D} \phi e^{-S[\phi]}=\operatorname{Tr} e^{-\beta H}$
$Z \sim e^{-\beta E_{\text {Casimir }}} \quad$ as $\quad \beta \rightarrow \infty \quad$ (projects to ground state)

The importance of being supersymmetric

- $Z_{\text {non-susy }}$ is ambiguous due to local counterterm :

$$
-\log Z_{\text {non-susy }}+\frac{b \int d^{4} x \sqrt{g} R^{2}}{\neq 0 \text { on } S^{1} \times S^{3}}
$$

\rightarrow Casimir energy on $S^{1} \times S^{3}$ is scheme-dependent

- In susy case : ambiguities are gauge-invariant (new minimal) supergravity actions of dim $=4$
- they are all F-terms
- F-terms vanish on susy backgrounds with 2 supercharges of opposite R-charge

$$
-\log Z_{\text {susy }}+b \int d^{4} x \sqrt{g}\left[\left(R+6 V_{\mu} V^{\mu}\right)^{2}-8 F_{\mu \nu} F^{\mu \nu}\right]+\text { fermions } ~\left(~=0 \text { on } S^{1} \times S^{3}!\right.
$$

The importance of being supersymmetric

of If an $\mathrm{N}=1$ SCFT is defined on a supersymmetric background preserving two Euclidean supercharges, and using new minimal sugra
\& then the dependence of the supersymmetric partition function on the background is free of ambiguities
$\rightarrow \quad E_{\text {susy }}=\frac{2}{3}\left(b_{1}+b_{2}\right)(a-c)+\frac{2}{27} \frac{\left(b_{1}+b_{2}\right)^{3}}{b_{1} b_{2}}(3 c-2 a)$
is an intrinsic observable of the SCFT
\checkmark superalgebra implies the BPS condition $E_{\text {susy }}=\frac{1}{r}\langle\boldsymbol{R}\rangle$ on round $S_{\beta}^{1} \times S_{r}^{3}$
\rightarrow vacuum charged!

QFT

gauge/gravity

Holographic dictionary

Holographic Casimir energy

$$
Z\left[\mathcal{H}_{p, q}\right]=\mathrm{e}^{-\mathcal{F}(p, q)} \mathcal{I}(p, q)
$$

$$
\begin{aligned}
\mathcal{F}(p, q) & =\beta E_{\text {susy }}\left(b_{1}, b_{2}\right) \\
E_{\text {susy }} & =\frac{2}{3}\left(b_{1}+b_{2}\right)(a-c)+\frac{2}{27} \frac{\left(b_{1}+b_{2}\right)^{3}}{b_{1} b_{2}}(3 c-2 a)
\end{aligned}
$$

dominates Z at large $N_{c} \rightarrow$ prediction for dual supergravity solutions

- There should be a family of susy solutions with $\partial M_{5}=\mathcal{H}_{p, q}$ such that:

$$
S_{5 d \text { sugra }}\left[M_{5}\right]=\frac{2}{27} \beta \frac{\left(b_{1}+b_{2}\right)^{3}}{b_{1} b_{2}} \frac{\pi^{2} \ell^{3}}{\kappa_{5}^{2}}
$$

$$
c=a=\pi^{2} \ell^{3} / \kappa_{5}^{2}
$$

Holographic Casimir energy

$$
Z\left[\mathcal{H}_{p, q}\right]=\mathrm{e}^{-\mathcal{F}(p, q)} \mathcal{I}(p, q)
$$

$$
\begin{aligned}
\mathcal{F}(p, q) & =\beta E_{\text {busy }}\left(b_{1}, b_{2}\right) \\
E_{\text {busy }} & =\frac{2}{3}\left(b_{1}+b_{2}\right)(a-c)+\frac{2}{27} \frac{\left(b_{1}+b_{2}\right)^{3}}{b_{1} b_{2}}(3 c-2 a)
\end{aligned}
$$

dominates Z at large $N_{c} \rightarrow$ prediction for dual supergravity solutions

- There should be a family of suse solutions with $\partial M_{5}=\mathcal{H}_{p, q}$ such that:

$$
\left.\begin{array}{rl}
S_{5 \mathrm{~d} \text { sugra }}\left[M_{5}\right] & =\frac{2}{27} \beta \frac{\left(b_{1}+b_{2}\right)^{3}}{b_{1} b_{2}} \frac{\pi^{2} \ell^{3}}{\kappa_{5}^{2}}
\end{array}=\frac{16}{27} \frac{\beta}{r} \frac{\pi^{2} \ell^{3}}{\kappa_{5}^{2}}\right] \quad . \quad b_{1}=b_{2}=\frac{1}{r} \quad \text { round } S_{\beta}^{1} \times S_{r}^{3}
$$

Holographic renormalization

On-shell action a priori divergent

$$
S=\frac{1}{2 \kappa_{5}^{2}} \int_{M_{5}} d^{5} x \sqrt{g}\left(R[g]-F^{2}+\frac{12}{\ell^{2}}\right)-A \wedge F \wedge F
$$

5d supergravity action $S_{\text {bulk }}$

Holographic renormalization

On-shell action a priori divergent

$$
\begin{aligned}
S= & \frac{1}{2 \kappa_{5}^{2}} \int_{M_{5}} d^{5} x \sqrt{g}\left(R[g]-F^{2}+\frac{12}{\ell^{2}}\right)-A \wedge F \wedge F \quad \begin{array}{l}
\text { 5d supergravity } \\
\text { action } S_{\text {bulk }}
\end{array} \\
& +\frac{1}{\kappa_{5}^{2}} \int_{\partial M_{5}} d^{4} x \sqrt{h}\left(K-\frac{3}{\ell}-\frac{\ell}{4} R[h]\right) \quad \text { divergent counterterms }
\end{aligned}
$$

Holographic renormalization

On-shell action a priori divergent

$$
\begin{aligned}
S= & \frac{1}{2 \kappa_{5}^{2}} \int_{M_{5}} d^{5} x \sqrt{g}\left(R[g]-F^{2}+\frac{12}{\ell^{2}}\right)-A \wedge F \wedge F \quad \begin{array}{l}
\text { 5d supergravity } \\
\text { action } S_{\text {bulk }}
\end{array} \\
& +\frac{1}{\kappa_{5}^{2}} \int_{\partial M_{5}} d^{4} x \sqrt{h}\left(K-\frac{3}{\ell}-\frac{\ell}{4} R[h]\right) \quad \text { divergent counterterms } \\
& +\frac{1}{\kappa_{5}^{2}} \int_{\partial M_{5}} d^{4} x \sqrt{h}\left(\lambda_{1} R_{i j k l}[h]^{2}+\lambda_{2} R_{i j}[h]^{2}+\lambda_{3} R[h]^{2}+\lambda_{4} F_{i j}^{2}\right)
\end{aligned}
$$

Holographic renormalization

On-shell action a priori divergent

$$
\begin{aligned}
S= & \frac{1}{2 \kappa_{5}^{2}} \int_{M_{5}} d^{5} x \sqrt{g}\left(R[g]-F^{2}+\frac{12}{\ell^{2}}\right)-A \wedge F \wedge F \quad \begin{array}{l}
\text { 5d supergravity } \\
\text { action } S_{\text {bulk }}
\end{array} \\
& +\frac{1}{\kappa_{5}^{2}} \int_{\partial M_{5}} d^{4} x \sqrt{h}\left(K-\frac{3}{\ell}-\frac{\ell}{4} R[h]\right) \quad \text { divergent counterterms } \\
& +\frac{1}{\kappa_{5}^{2}} \int_{\partial M_{5}} d^{4} x \sqrt{h}\left(\lambda_{1} R_{i j k l}[h]^{2}+\lambda_{2} R_{i j}[h]^{2}+\lambda_{3} R[h]^{2}+\lambda_{4} F_{i j}^{2}\right)
\end{aligned}
$$

- For round $S_{\beta}^{1} \times S_{r}^{3}$ the most natural candidate is pure Anti de Sitter space

Choosing $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$

$$
S=\frac{3}{4} \frac{\beta}{r} \frac{\pi^{2} \ell^{3}}{\kappa_{5}^{2}} \quad \neq \frac{16}{27} \frac{\beta}{r} \frac{\pi^{2} \ell^{3}}{\kappa_{5}^{2}}
$$

does NOT match the susy QFT result!
...could think about adjusting the λ 's ... but ...

Holographic renormalization

- $\frac{1}{\sqrt{g^{\text {bdy }}}} \frac{\delta S}{\delta A_{i}^{\text {bdy }}}=j^{i}$ holographic R-current \rightarrow holographic R-charge $\langle\boldsymbol{R}\rangle$
however unavoidably for $\mathbf{A d S}_{5}:\langle\boldsymbol{R}\rangle=\mathbf{0}$
$\rightarrow\langle\boldsymbol{E}\rangle \neq \frac{1}{r}\langle\boldsymbol{R}\rangle \quad$ BPS relation violated
unless one tunes λ 's such that

$$
\langle\boldsymbol{E}\rangle=\frac{1}{r}\langle\boldsymbol{R}\rangle=0 \quad \text { misses Casimir energy }
$$

...something is not working here

New supergravity solutions

Benetti Genolini, D.C., Martelli, Sparks

We constructed a very general AIAdS solution perturbatively near the boundary

$$
g^{\mathrm{bulk}}=\frac{\mathrm{d} \rho^{2}}{\rho^{2}}+\frac{1}{\rho^{2}}\left[g^{\mathrm{bdy}}+g^{(2)} \rho^{2}+\left(g^{(4)}+\tilde{g}^{(4)} \log \rho^{2}\right) \rho^{4}+\ldots\right]
$$

- boundary metric:
$g^{\text {bdy }}=\mathrm{d} \tau^{2}+(\mathrm{d} \psi+a)^{2}+4 \mathrm{e}^{w} \mathrm{~d} z \mathrm{~d} \bar{z}$
with $\mathrm{d} a=\mathrm{i} u \mathrm{e}^{w} \mathrm{~d} z \wedge \mathrm{~d} \bar{z} \quad$
$u(z, \bar{z}), w(z, \bar{z})$
arbitrary

describes $S^{1} \times S^{3}$ topology (and more)
- graviphoton field $A^{\text {bulk }}$ also determined

$$
A^{\mathrm{bdy}}=-\frac{1}{\sqrt{3}}\left[\frac{\mathrm{i}}{8} u \mathrm{~d} \tau+\frac{1}{4} u(\mathrm{~d} \psi+a)+\frac{\mathrm{i}}{4}\left(\partial_{\bar{z}} w \mathrm{~d} \bar{z}-\partial_{z} w \mathrm{~d} z\right)+\gamma \mathrm{d} \psi\right]
$$

- 4 free subleading functions $k_{1}(z, \bar{z}), k_{2}(z, \bar{z}), k_{3}(z, \bar{z}), k_{4}(z, \bar{z})$

New supergravity solutions

- non-trivial:
susy involves solving 6th-order equation for auxiliary Kähler metric

$$
\begin{array}{r}
\nabla^{2}\left(\frac{1}{2} \nabla^{2} R+\frac{2}{3} R_{p q} R^{p q}-\frac{1}{3} R^{2}\right)+\nabla^{m}\left(R_{m n} \partial^{n} R\right)=0 \\
\text { D.C., Lorenzen, Martelli }
\end{array}
$$

bulk metric has complex components (but real in Lorentzian signature)

\triangleon-shell action gauge-dependent due to Chern-Simons term $\int A \wedge F \wedge F$
\rightarrow crucial to fix the gauge properly

- Killing spinors independent of time
- gauge field globally well-defined

Supersymmetric holographic renormalization

Vary the boundary data keeping complex structure on $\boldsymbol{\partial} \boldsymbol{M}$ fixed
\longleftrightarrow vary the functions $u(z, \bar{z}), w(z, \bar{z})$ with globally def. variations

$$
\delta S=\int_{M_{4}} \mathrm{~d}^{4} x \sqrt{g^{\mathrm{bdy}}}\left(\frac{1}{2} T^{i j} \delta g_{i j}^{\mathrm{bdy}}+j^{i} \delta A_{i}^{\mathrm{bdy}}\right)
$$

\There is no choice of $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ such that $\delta_{u} S=0=\delta_{w} S$
\rightarrow Holographic renormalization violates field theory susy Ward identities!

Supersymmetric holographic renormalization

Vary the boundary data keeping complex structure on $\boldsymbol{\partial} \boldsymbol{M}$ fixed
\longleftrightarrow vary the functions $u(z, \bar{z}), w(z, \bar{z})$ with globally def. variations

$$
\delta S=\int_{M_{4}} \mathrm{~d}^{4} x \sqrt{g^{\mathrm{bdy}}}\left(\frac{1}{2} T^{i j} \delta g_{i j}^{\mathrm{bdy}}+j^{i} \delta A_{i}^{\mathrm{bdy}}\right)
$$

\There is no choice of $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ such that $\delta_{u} S=0=\delta_{w} S$
\rightarrow Holographic renormalization violates field theory susy Ward identities!
new boundary term $\Delta S_{\text {new }}$ such that $S_{\text {susy }}=S+\Delta S_{\text {new }}$ satisfies $\delta S_{\text {susy }}=0$

$$
\begin{array}{rlr}
\Delta S_{\text {new }}\left[M_{4}\right] & =\frac{1}{\kappa_{5}^{2}} \int_{M_{4}}\left(\mathrm{i} A^{\mathrm{bdy}} \wedge \Phi+\Psi\right) & \begin{array}{l}
S \text { is taken with } \\
\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=0
\end{array} \\
\Phi & =\frac{1}{72 \sqrt{3}}\left(u^{3}+4 u \square w\right) \mathrm{i} \mathrm{e}^{w} \mathrm{~d} z \wedge \mathrm{~d} \bar{z} \wedge(2 \mathrm{~d} \psi+\mathrm{i} \mathrm{~d} \tau) \\
\Psi & =\frac{1}{2^{11} 3^{2}}\left(-19 u^{4}-48 u^{2} \square w\right) \mathrm{d}^{4} x \sqrt{g^{\mathrm{bdy}}}
\end{array}
$$

Supersymmetric holographic renormalization

We propose that $S_{\text {susy }}\left[M_{5}\right]=S\left[M_{5}\right]+\Delta S_{\text {new }}\left[M_{4}\right]$
should be identified with the SCFT $-\log Z_{\text {susy }}\left[M_{4}\right]$

Although we don't know the solution in the interior, under topological assumption we can actually evaluate the on-shell action

- $S_{\text {bulk }}$ reduces to a boundary term

-4 subleading functions $k_{1}(z, \bar{z}), k_{2}(z, \bar{z}), k_{3}(z, \bar{z}), k_{4}(z, \bar{z})$ drop out!

Supersymmetric holographic renormalization

$$
S_{\text {susy }}=S+\Delta S_{\text {new }}=\frac{\gamma^{2}}{27} \int_{M_{4}} \mathrm{~d}^{4} x \sqrt{g^{\text {bdy }}} R_{(2 d)} \frac{\ell^{3}}{\kappa_{5}^{2}}
$$

Supersymmetric holographic renormalization

$$
S_{\text {susy }}=S+\Delta S_{\text {new }}=\frac{8 \pi^{2} \beta \frac{\gamma_{1}+b_{2}}{b_{1} b_{2}}}{27} \int_{M_{4}} \mathrm{~d}^{4} x \sqrt{g^{\text {bdy }}} R_{(2 d)} \frac{\ell^{3}}{\kappa_{5}^{2}}
$$

Supersymmetric holographic renormalization

$$
\begin{aligned}
& \text { from } A^{\text {bdy }}=\ldots+\gamma \mathrm{d} \psi \\
& \gamma=\frac{1}{2}\left(b_{1}+b_{2}\right) \quad 8 \pi^{2} \beta \frac{b_{1}+b_{2}}{b_{1} b_{2}} \\
& S_{\text {susy }}=S+\Delta S_{\text {new }}=\frac{\gamma^{2}}{27} \int_{M_{4}}^{\mathrm{d}^{4} x \sqrt{g^{\text {bdy }}} R_{(2 d)}} \frac{\ell^{3}}{\kappa_{5}^{2}}
\end{aligned}
$$

Supersymmetric holographic renormalization

$$
\begin{aligned}
& \text { from } A^{\mathrm{bdy}}=\ldots+\gamma \mathrm{d} \psi \\
& \qquad \begin{aligned}
& \gamma=\frac{1}{2}\left(b_{1}+b_{2}\right) \\
& S_{\text {susy }}=S+\Delta \pi^{2} \beta \frac{b_{1}+b_{2}}{b_{1} b_{2}} \\
&=\frac{2}{27} \beta \frac{\left(b_{1}+b_{2}\right)^{3}}{b_{1} b_{2}} \frac{\pi^{2} \ell^{3}}{\kappa_{5}^{2}}
\end{aligned}
\end{aligned}
$$

$\boldsymbol{\gamma} \boldsymbol{\beta} \boldsymbol{E}_{\mathrm{susy}}$
also computed $\langle R\rangle$ via $\frac{1}{\sqrt{g^{\text {bdy }}}} \frac{\delta S_{\text {susy }}}{\delta A_{i}^{\text {bdy }}}=j^{i}$
\checkmark BPS relation

Conclusions

- Standard holographic renormalization in 5d violates susy
- Identified boundary terms $\Delta S_{\text {new }}$ that restore susy Ward identities
- Constructed asymptotic solutions such that

$$
S_{\text {susy }}=S+\Delta S_{\text {new }}=\frac{2}{27} \beta \frac{\left(b_{1}+b_{2}\right)^{3}}{b_{1} b_{2}} \frac{\pi^{2} \ell^{3}}{\kappa_{5}^{2}}
$$

? $\Delta S_{\text {new }}$ in covariant form?
? which boundary fields involved?

First principle derivation such that bulk + boundary action is supersymmetric?

- does $\Delta S_{\text {new }}$ have consequences for susy AdS5 black holes?

... thank you !

