On the Chiral Ring of Warped AdS(3) Compactifications of Type IIB Supergravity

Johannes Schmude
Universidad de Oviedo

Supersymmetric Theories, their Dualities and Deformations
Bern, July 2016

Motivation I: 4d Theories on Riemann Surfaces

$$
\mathrm{d}=2,(0,2) \mathrm{sCFT} \longleftrightarrow \text { AdS/CFT } \longleftrightarrow \text { type IIB on } \operatorname{AdS}(3) \mathrm{xM}(7)
$$

Obvious questions: central charge, spectrum/chiral ring, 3-pt. functions.

Motivation II: Type IIB on AdS(3) w/ F5

Generalisation: Warped AdS_{3} with F_{5} and dilaton

$$
\begin{gathered}
d s_{I I B}^{2}=e^{2 A}\left[d s^{2}\left(\mathrm{AdS}_{3}\right)+d s_{7}^{2}\right], \quad d s_{7}^{2}=e^{-4 A} d s_{6}^{2}+\eta^{2} . \\
F_{5}=(1+\star) \operatorname{vol}\left(\operatorname{AdS}_{3}\right) \wedge F, \quad F=\frac{1}{2} J-\frac{1}{4} d\left(e^{4 A} \eta\right) .
\end{gathered}
$$

Generalisation of Sasaki-Einstein case:

- M_{6} is Kähler.
- M_{7} is Cauchy-Riemann (CR).
- $\mathrm{M}_{8}=C\left(M_{7}\right)$ is a complex variety (not Kähler!).

Kim; Gauntlett; Donos, Mac Conamhna, Mateos, Sparks, Waldram, ...; Harvey, Lawson; Yau

Motivation III: Learn about AdS/CFT from KK \leftrightarrow learn about KK from AdS/CFT.

AdS/CFT and Kaluza-Klein

Recall

scaling dimensions $\leftrightarrow \operatorname{AdS}(3)$ masses \leftrightarrow spectra of differential operators on M_{7}

Need to analyse on M_{7} (among others):

$$
\begin{array}{rlr}
\mathcal{L}_{0} & =\Delta-8 g^{\kappa \lambda} \partial_{\kappa} A \partial_{\lambda}, & \text { spin-2 \& axio-dilaton fluctuations } \\
\mathcal{L}_{1 / 2} & =\Gamma^{\mu} \nabla_{\mu}+\frac{9}{2} \Gamma^{\mu} \partial_{\mu} A+\frac{1}{2} e^{-4 A} \Gamma^{\mu \nu} F_{\mu \nu} . & \text { dilatino fluctuations } \\
\text { Compare: Klebanov, Pufu, Rocha; Bachas, Estes; Ahn, Woo; Passias, Tomasiello; } . . .
\end{array}
$$

Aim: Solve these by exploiting superconformal symmetry.

- Unitarity bounds - bounds on spectra.
- Ring structure - cohomology groups at bound.
- Supersymmetry - maps between spectra of different operators.

A Subtlety: The Baryonic Contribution to the R-symmetry

From supergravity classification of background \& Killing spinors

$$
\eta \leftrightarrow U(1)_{R}
$$

c-extremization yields baryonic contribution to $\mathrm{d}=2 \mathrm{R}$-symmetry

$$
T_{\mathrm{tr}}=\epsilon_{1} T_{1}+\epsilon_{2} T_{2}+T_{R}+\epsilon_{B} T_{B}
$$

The Deformed Laplacian I — Deformed Adjoint Operators

Recall the de Rham-Laplacian:

$$
(\alpha, \beta) \equiv \int \star \bar{\alpha} \wedge \beta, \quad(d \alpha, \beta)=\left(\alpha, d^{*} \beta\right), \quad \Delta=d d^{*}+d^{*} d
$$

$$
(\alpha, \beta)_{c} \equiv \int e^{c A} \star \bar{\alpha} \wedge \beta, \quad(d \alpha, \beta)_{c}=\left(\alpha, d_{c}^{*} \beta\right), \quad \mathcal{L}_{0}=d d_{8}^{*}+d_{8}^{*} d
$$

Generalises to p-forms (gauge-fixing, Hodge decomposition).

Recall that for Kähler manifolds:

$$
\Delta=2 \Delta_{\bar{\partial}}, \quad \Delta Y=0 \text { iff } \bar{\partial} Y=0
$$

The Deformed Laplacian II - The CR Structure

$$
T_{\mathbb{C}} M_{7}=T^{1,0} \oplus T^{0,1} \oplus \mathbb{C} \eta
$$

$$
\left[T^{1,0}, T^{1,0}\right] \subseteq T^{1,0} \quad \Rightarrow \quad d=\partial_{b}+\bar{\partial}_{b}+\eta \wedge £_{\eta}
$$

Holomorphy in the CR sense is related to holomorphy on the variety M_{8}.

The Deformed Laplacian III - Solutions at the Bound

The unitarity bound for scalar "wavefunctions" (both spin-2 \& axio-dilaton)

$$
£_{\eta} Y=\imath q Y, \quad \mathcal{L}_{0} Y \equiv\left(E_{0}^{2}+2 E_{0}\right) Y \geq\left(q^{2}+2 q\right) Y, \quad \text { with } "=" \text { iff } \bar{\partial}_{b} Y=0 .
$$

Thus: Every holomorphic function defines
graviton, spin 2
axio-dilaton, spin 0

$$
\left|\frac{E_{0}+4}{2}\right\rangle \otimes\left|\frac{E_{0}}{2}, q\right\rangle
$$

$$
Y \in H_{\bar{\partial}_{b}}^{0,0}\left(M_{7}\right) \cong H^{0,0}\left(M_{8}\right)
$$

at bound: chiral primary

$$
\left|\frac{E_{0}+2}{2}\right\rangle \otimes\left|\frac{E_{0}+2}{2}, q\right\rangle
$$

at bound: descendant of
chiral primary

Holomorphic Sections on CY_{3} and M_{8}.

How is M_{8} related to CY_{3} and Σ ?

Dilatino Fluctuations \& Supersymmetry

$$
\mathcal{L}_{1 / 2}\binom{e^{-A} Y \zeta^{c}}{e^{-A} \Gamma^{\mu} \partial_{\mu} Y \zeta^{c}}=\left(\begin{array}{cc}
\frac{\imath}{2} & 1 \\
-\mathcal{L}_{0} & -\frac{3 \imath}{2}
\end{array}\right)\binom{e^{-A} Y \zeta^{c}}{e^{-A} \Gamma^{\mu} \partial_{\mu} Y \zeta^{c}}
$$

Recall:

$$
\mathcal{L}_{0}=\Delta-8 g^{\kappa \lambda} \partial_{\kappa} A \partial_{\lambda}, \quad \mathcal{L}_{1 / 2}=\Gamma^{\mu} \nabla_{\mu}+\frac{9}{2} \gamma^{\mu} \partial_{\mu} A+\frac{1}{2} e^{-4 A} \gamma^{\mu \nu} F_{\mu \nu}
$$

Example I: AdS(3) x S^{3}

$$
\mathrm{AdS}_{3} \times S^{3} \times T^{4} \quad \rightarrow \quad C\left(S^{3} \times T^{4}\right)=\mathbb{C}^{2} \times T^{4} \quad \rightarrow \quad H^{0,0}\left(\mathbb{C}^{2}\right)
$$

Chiral primaries \leftrightarrow homogeneous polynomials; R-charges \leftrightarrow degrees

Note: T^{4} is irrelevant due to holomorphy, not scaling.

Example II: The "Universal Flow" from AdS(5)xYp,q

"Universal flow": $\mathrm{U}(1) \mathrm{Uv}=\mathrm{U}(1)_{\mathrm{I}}$

$$
\begin{aligned}
d s_{10}^{2}= & d s^{2}\left(\mathrm{AdS}_{3}\right)+\frac{3}{4} d s^{2}\left(\Sigma_{g>1}\right)+\frac{9}{4} d s^{2}\left(\tilde{Y}^{p, q}\right) \\
d s^{2}\left(\Sigma_{g>1}\right)= & d s^{2}\left(\mathbb{H}_{2} / \Gamma\right)=\frac{1}{x_{2}^{2}}\left(d x_{1}^{2}+d x_{2}^{2}\right) \\
d s^{2}\left(\tilde{Y}^{p, q}\right)= & \frac{1-c y}{6}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)+\frac{1}{w q} d y^{2}+\frac{w q}{36}(d \beta+\cos \theta d \phi)^{2} \\
& +\frac{1}{9}\left[d \psi-\cos \theta d \phi+y(d \beta+c \cos \theta d \phi)-\frac{d x_{1}}{x_{2}}\right]
\end{aligned}
$$

Assume separability:

$$
Y=e^{\imath N_{\tilde{\psi}} \tilde{\psi}+\imath N_{\phi} \phi+\imath \frac{N_{\alpha}}{l} \alpha} X\left(x_{1}, x_{2}\right) \Theta(\theta) R(y)
$$

Impose holomorphy:

$$
\bar{\partial}_{b} Y=0 \Rightarrow\left\{\begin{array}{l}
\Theta(\theta)=\frac{(\sin \theta)^{N_{\phi}+N_{\tilde{\psi}}}}{(1+\cos \theta)^{N_{\phi}}} \\
R(y)=\prod_{i=1}^{3}\left(y-y_{i}\right)^{a_{i}}
\end{array}\right.
$$

Example II: The "Universal Flow" and the Role of $\Sigma_{g>1}$

For the upper half plane

$$
X(z, \bar{z})=f(z)(\operatorname{Im} z)^{-q / 2}
$$

For compact Σ : e.g. Klein Quartic

$$
\Gamma=\{M \in \operatorname{PSL}(2, \mathbb{Z}) \mid M \equiv 1 \quad \bmod 7\}
$$

$$
X(z, \bar{z})=(\operatorname{Im} z)^{-q / 2} \sum_{k \in \mathbb{Z}} a_{k} e^{\frac{2 \pi \tau z}{\tau}}
$$

$$
X \circ U_{7}(z, \bar{z})=(\operatorname{Im} z)^{-q / 2}\left\{\left[(7 \operatorname{Re} z+1)^{2}+(\operatorname{Im} z)^{2}\right]^{q / 2} \sum_{k \in \mathbb{Z}} a_{k} e^{\frac{2 \pi z z}{\bar{T}(\bar{z}+1)}}\right\}
$$

Only one mode survives the projection \rightarrow dual to energy-momentum tensor

$$
\Rightarrow q=0, X=\text { const. } \quad \Rightarrow \quad Y=\text { const. }
$$

Questions, Comments \& Some Future Directions

- Baryonic operators \& the "baryonic" R-symmetry contribution.
- Complete chiral ring/spectrum?
- Complex structure deformations (via p-forms).
- Elliptic genera?
- More general: fluxes, geometries, ... (results on Betti multiplets exist.)
- $\mathrm{C}\left(\mathrm{M}_{\mathrm{SE}(5)}\right)$ vs. $\mathrm{C}\left(\mathrm{M}_{8}\right)$?

Thanks!

