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Supersymmetric Theories

Outline:

Following orders:

@ Supersymmetric Theories
@ Dualities
@ Deformations

As the title indicates, the supersymmetric theories will be 2d
N = (0,2) theories obtained from D1-branes at CY-4 singularities.
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Supersymmetric Theories

Motivation

After considering,
@ D3-branes at CY singularities,
@ M2-branes at CY singularities,
the next logical step would be

@ Dl-branes at CY singularities.
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Supersymmetric Theories

But that last slide wasn't so motivating . ..

More seriously, considering branes at singularities has taught us
much about holography.

“All happy families are alike; each unhappy family is unhappy in its
own way."

Each brane has its own idiosyncrasies.

In particular 3D theories taught us much about monopole
operators and the Coulomb branch.

2D N = (0, 2) theories have a reputation for being difficult, but
the ones arising from D1 branes at singularities seem to be well
under control.
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Renewed interest in (0, 2)

e Elliptic genus from supersymmetric localization [F. Benini, R.
E. , K. Hori, Y. Tachikawa] [A. Gadde, S. Gukov]

@ Brane brick models [S. Franco, S. Lee, R. Seong]
@ F-theory constructions [S. Schafer-Nameki, T. Weigand]
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N = (8,8) SYM in 2D

£y &
Figure: dg quiver corresponding to C*
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Supersymmetric Theories

N = (0, 2) superspace

We introduce N = (0, 2) superspace to construct manifestly
supersymmetric Lagrangrangians. The bosonic coordlnates are
y®, a = 1,2 and fermionic coordinates are 67, 9", The two
supersymmetry generators are

9y = 80% +i6 <880 88)/1> (1.1)
g, - a;_,-e((fyﬁail). (12)
The supersymmetry generators commute with the super derivatives
oo - Zoi(Le k) as
D, = (£++i0<£)+($). (1.4)
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N = (0,2) theories

There are two types of matter multiplets which we now introduce.
The first matter field we consider is the (0, 2) chiral multiplet ¢

which obeys
5+¢ - 0

and has components
®=¢+ V20, — 070 (Do + D1)o.
The Fermi multiplet A_ satisfies
D A_=2E
where E is a superfield obeying

§+E == 0
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Interactions

We will only need to consider the case where E = E(®;) is a
holomorphic function of some chiral superfields ®;. In addition to
the E-interaction, we can introduce a J-interaction using the (0, 2)
analog of the superpotential:

L, = /d2yd9+ A ad?(®))]5+ -
For this term to be supersymmetric, the following constraint must
be satisfied:
> EL(97)J7(d7) =0.

The E and J-interactions can be exchanged be replacing the Fermi
multiplet A_ with its conjugate A_.
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Calabi-Yau algebras in physics

Quivers have been intensely studied in the context of D-branes

A particular feature of D3-branes at a Calabi-Yau threefold
singularity is that all of the relations come from a single
function known as the superpotential.

A form of Serre duality results in the quiver with potential
having a self-dual resolution as a non-commutative algebra
[Berenstein-Douglas].

This led to the notion of a 3-Calabi Yau algebra in [van den
Bergh] and to Calabi-Yau n-algebras in Ginzburg.

@ We introduce the structure of Calabi-Yau 4-algebras following
[Lam].
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Calabi-Yau 4 algebras from geometry

Given a (Gorenstein) CY4 singularity, we can always construct a
CY-4 algebra from a NCCR. Fortunately these have been well
studied by mathematicians. Physically, we obtain a NCCR from a
collection of branes satisfiying the “Grade-Restriction Rule”
[abelian — Hori-Herbst-Page '08, non-abelian —
R.E.-Hori-Knapp-Romo '18].

This can be used to rederive the theory of brane tilings [RE
arXiv:1003.2862] and its higher dimensional generalization needed
for CY 4 singularities. Also one of the first hints of cluster algebras
and integrable systems.
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Calabi-Yau 4-algebras from quivers

A quiver @ can be described as a collection of vertices Qq, arrows
@1 and maps h: Q1 — @ and t: Q1 — @ called the “head” and
“tail” of an arrow. A Calabi-Yau 4-algebra consists of the following
data.

@ A quiver @ = (Qo, Q1. h: Q1 = Qo,t: Q1 — Qo) -

Q@ Amap A: Q1 — CQ such that A, := A(r) € ep,)CQeyr).

© A symmetric function g : Q; X @1 — C such that

® q(r,s) =0 unless r and s have the same underlying edge are
oppositely oriented. That is to say, h(r) = t(s) and
h(s) = t(r).

@ g is nondegenerate — meaning that the matrix ¢(r,s) is
invertible.

(5 Zr,ste q(r,s)A,As =0 mod [CQ,CQ].
Remarkably, this can be precisely translated into the structure of a
(0,2) theory.
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(0,2) theories from Calabi-Yau 4 algebras

Essentially, the map A: Q1 — CQ such that
A, = A(r) € ep\CQey(,) specifies both the J and E terms.
Furthermore the condition

> q(r.s)AAs=0 mod [CQ,CQ]

r75€Ql

is precisely the constraint that

D Es(9))J°(®;) =0.
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Opz(—l) D O]pz(—z) — P2
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Opz(—l) D O]pz(—z) — P2

Figure: Underlying quiver corresponding to Op2(—1) @ Op2(—2) — P?
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Dualities

Dualities

Figure: Translations <+ Dualities, From [R.E., S. Franco arXiv:1112.1132]
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Deformations

Previous applications of Calabi-Yau algebras

@ Equivalence of A-maximization and volume minimization
[Butti-Zaffaroni '05] [R.E. '10]

@ Matching of superconformal index

e D3 branes — [R.E., J. Schmude, Y. Tachikawa]
arXiv:1207.0573

e M2 branes — [R.E., J. Schmude arXiv:1305.3547]
@ Matching of protected operators [R.E. arXiv:1510.04078]

Many of these results generalize to 2d theories!
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Motivation from Holography

Gauge Theory

R3’1 X X(, Ad55 X L5
N D3 branes N units of RR-flux
Xp Calabi-Yau 6-manifold Ls Sasaki-Einstein 5-manifold

Gravity Theory

Figure: N D3-branes
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Goal: Match Closed String States in the large-N limit

Gauge Theory Gravity Theory

R x X AdSs % Ls
HC.(CQ/aW) HPo(X,m = 0)
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N D3 branes filling RY3 in RY3 x C3.

DI
<

N = 4 SYM has superpotential
W = Tr(XYZ — XZY)

where X, Y, Z are adjoint-valued chiral superfields.

Superpotential algebra

A=C(x,y,z)/(xy — yx,yz — zy,zx — xz) = C|x, y, 2]
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Protected operators in N’ = 4 SYM

N =4 SYM has three adjoint chiral scalar superfields ®1, d2, ®3.
Their interactions are described by the superpotential

W =Tro! [02 ¢3].
Consider an operator of the form
O = TA%2% = Tr oA o2 | %,

If T##2-%k is symmetric in its indices, then the operator is in a
short representation of the superconformal algebra. If T#%2% js
not symmetric, then the operator is a descendant, because the
commutators [®Z 7] are derivatives of the superpotential W
[Witten '98].
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Matching protected operators in A’ = 4 SYM

Under the AdS/CFT dictionary, a scalar excitation ® in AdS

obeying
(DAdss — m2)¢ =0

with asymptotics p~2 near the boundary of AdS (p — o0) is dual
to an operator of scaling dimension

= m?

2
d. /94 _
2 4

m? = A(A —d) — Ay =
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Matching protected operators in A’ = 4 SYM

The operator
O =Tro%o%2  d%*

has conformal dimension k and is
dual to a supergravity state of
spin zero and mass

m? = k(k — 4).
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Goal: Test AdS/CFT by small deformations

N = 4 SYM has superpotential
W = Tr(XYZ — XZY).

What happens when we deform it by giving a mass to one of the
scalars
W = Tr (XYZ — XZY + mZ?)

or deform the coupling constants?
W = Tr (gXYZ — ¢~ XZY)

Can we still match the spectrum of protected operators?
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Operators in N' = 4 Super Yang-Mills

For X = C3, 1% = S®. The corresponding gauge theory is N' = 4
SYM, whose superpotential algebra is

A:(C<X,y,2>/(Xy—yX,yZ—Zy,ZX—XZ) gC[X,y,Z]

HG |13 ]6 (1015 ] 21 | 28
HCG, |0 0] 3] 8 |15] 24| 35
HG|0oj 0|01 (3] 6|10
I()|1|3[3 33|33

Table: Cyclic homology group dimensions for A" = 4 SYM

Elements O € HGy(A) = A/[A, A] are of the form
O = Trx'yizK, i,j,k € N>g
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The [B-deformation

The 3-deformation of N = 4 super Yang-Mills theory is a quiver
gauge theory with potential W = gxyz — g~ 1xzy where g = e’.
The F-term relations are

xy = q 2yx
yz=q °zy
2

zXx = q “xz

The cyclic homology groups were computed by Nuss and Van den
Bergh.
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Chiral Primaries in the 3-deformation

Consider an operator O = Trlih ... I, where [; is one of the
letters x, y, or z. Suppose that /1 is an x. The F-term conditions
imply that

O=Trhb.. dyp1ly=¢ =D Teihh. . 1yq,

where |x|, |y|, and |z| are the total number of x's, y's, and z's in
the operator O. Thus the single-trace chiral primaries have charges
(k,0,0),(0, k,0),(0, k,0), (k, k, k) [D. Berenstein, V. Jejjala, R. G.
Leigh]. * For g a k-th root of unity, the cyclic homology groups
jump.

'For G = SU(N) there are additional chiral primaries Tr xy, Tr xz and Tr yz.
This agrees with the perturbative one-loop spectrum of chiral operators found
in [D. Z. Freedman, U. Gursoy].
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Operators in the [-deformation

Cyclic homology gives a prediction for the spectrum of protected
operators in the S-deformation. The corresponding gravity solution
was found by Lunin and Maldacena.

1 t2 t4 t6 t8 th 1.'12
HG |13 [3|4|3]| 3| 4
Ha |olo|ol2]o0|o0]2
HG|o|lo|o|1]0|o0]1
I [1[3[3[3[3 ]3] 3

Table: Cyclic homology group dimensions for the S-deformation
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Massive Deformation

After adding a mass deformation AL = Tr mz?, to N = 4 super
Yang-Mills, the superpotential is W = xyz — xzy + mz?. Since z is
massive, it can be integrated out of the Lagrangian using its
equations of motion. The result is W = L[x, y]?. Both
superpotential algebras are Morita equivalent and have the same Q
cohomology groups. The F-term relations are

[X7y] =z
[x,z] =0
ly,z] = 0.
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Massive Deformation Il

The Q-cohomology for the massive deformation is

1 t3 2 t3 1_'9 2 t6 t15 2 1_'9
HG (1] 2 |3 4 |5 6 |7
HG ol o [o| 2 |3] 4 |5
HG ol o [0 0 |1] 0 |1
Ity [1] 2 [3] 2 [3] 2 [3

Table: Cyclic homology group dimensions for the massive deformation

We will compare these protected operators to the short
representations in the KK-spectrum of the exact SUGRA solution
found by Pilch and Warner.
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Pilch-Warner Solution

A new critical point of A/ = 8 gauge supergravity on AdSs was
discovered by Khavaev-Pilch-Warner. Pilch and Warner found the
full type lIB supergravity solution.

dsty = A71d5124d55 + L2Atdsz (p, X)

sinh?
¢2
p and x are critical points of the supergravity potential. For the

Pilch-Warner critical point p = 21/0 y = % log 3. The warp-factor
is

dsz(p, x) = (dx' Qdx”) + (x! Jpydx7?)?

A=Q2
where Q2 = ¢ cosh .
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Glueball spectrum

The KK-spectrum of glue balls is found by finding solutions of the
warped-Laplacian
A_l
vV —85
The short KK multiplets of the graviton exactly match the
prediction from the second cyclic homology group.

L=

0 (V=g52"1g"05)
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Further applications of cyclic homology

For CY-3 algebras
HC;(A) =0 for j > 2

This corresponds to the AdS dual theory having no particles of spin
higher than 2.

HCo(A) = Z(A)

So the KK-spectrum of gravitons can be computed from the center
of the superpotential algebra. For the Pilch-Warner solution, this
has been checked explicitly.
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Final Remarks

2d gauge theories

Found a precise relationship between geometry and physics. Many
exciting directions!

Deformations
We have shown how to compare the protected fields on both sides
of the AdS/CFT correspondence at large-N.

@ Further extension to finite N is possible, although the cyclic
homology groups become much harder to compute.
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Thank you for listening!
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