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As the title indicates, the supersymmetric theories will be 2d
N = (0, 2) theories obtained from D1-branes at CY-4 singularities.
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Motivation

After considering,

D3-branes at CY singularities,

M2-branes at CY singularities,

the next logical step would be

D1-branes at CY singularities.
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But that last slide wasn’t so motivating . . .

More seriously, considering branes at singularities has taught us
much about holography.

“All happy families are alike; each unhappy family is unhappy in its
own way.”

Each brane has its own idiosyncrasies.

In particular 3D theories taught us much about monopole
operators and the Coulomb branch.

2D N = (0, 2) theories have a reputation for being difficult, but
the ones arising from D1 branes at singularities seem to be well
under control.
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Renewed interest in (0, 2)

Elliptic genus from supersymmetric localization [F. Benini, R.
E. , K. Hori, Y. Tachikawa] [A. Gadde, S. Gukov]

Brane brick models [S. Franco, S. Lee, R. Seong]

F-theory constructions [S. Schafer-Nameki, T. Weigand]
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N = (8, 8) SYM in 2D
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Figure: dg quiver corresponding to C4
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N = (0, 2) superspace

We introduce N = (0, 2) superspace to construct manifestly
supersymmetric Lagrangrangians. The bosonic coordinates are
yα, α = 1, 2 and fermionic coordinates are θ+, θ

+
. The two

supersymmetry generators are

Q+ =
∂

∂θ+
+ iθ

(
∂

∂y0
+

∂

∂y1

)
(1.1)

Q+ =
∂

∂θ
+ − iθ

(
∂

∂y0
+

∂

∂y1

)
. (1.2)

The supersymmetry generators commute with the super derivatives

D+ =
∂

∂θ+
− iθ

(
∂

∂y0
+

∂

∂y1

)
(1.3)

D+ =
∂

∂θ
+ + iθ

(
∂

∂y0
+

∂

∂y1

)
. (1.4)
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N = (0, 2) theories

There are two types of matter multiplets which we now introduce.
The first matter field we consider is the (0, 2) chiral multiplet Φ
which obeys

D+Φ = 0

and has components

Φ = φ+
√

2θ+ψ+ − iθ+θ
+

(D0 + D1)φ.

The Fermi multiplet Λ− satisfies

D+Λ− =
√

2E

where E is a superfield obeying

D+E = 0.
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Interactions

We will only need to consider the case where E = E (Φi ) is a
holomorphic function of some chiral superfields Φi . In addition to
the E -interaction, we can introduce a J-interaction using the (0, 2)
analog of the superpotential:

LJ =

∫
d2ydθ+ Λ−,aJ

a(Φi )|θ+
=0
.

For this term to be supersymmetric, the following constraint must
be satisfied: ∑

a

Ea(Φi )J
a(Φi ) = 0.

The E and J-interactions can be exchanged be replacing the Fermi
multiplet Λ− with its conjugate Λ−.
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Calabi-Yau algebras in physics

Quivers have been intensely studied in the context of D-branes

A particular feature of D3-branes at a Calabi-Yau threefold
singularity is that all of the relations come from a single
function known as the superpotential.

A form of Serre duality results in the quiver with potential
having a self-dual resolution as a non-commutative algebra
[Berenstein-Douglas].

This led to the notion of a 3-Calabi Yau algebra in [van den
Bergh] and to Calabi-Yau n-algebras in Ginzburg.

We introduce the structure of Calabi-Yau 4-algebras following
[Lam].
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Calabi-Yau 4 algebras from geometry

Given a (Gorenstein) CY4 singularity, we can always construct a
CY-4 algebra from a NCCR. Fortunately these have been well
studied by mathematicians. Physically, we obtain a NCCR from a
collection of branes satisfiying the “Grade-Restriction Rule”
[abelian – Hori-Herbst-Page ’08, non-abelian –
R.E.-Hori-Knapp-Romo ’18].

This can be used to rederive the theory of brane tilings [RE
arXiv:1003.2862] and its higher dimensional generalization needed
for CY 4 singularities. Also one of the first hints of cluster algebras
and integrable systems.
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Calabi-Yau 4-algebras from quivers

A quiver Q can be described as a collection of vertices Q0, arrows
Q1 and maps h : Q1 → Q0 and t : Q1 → Q0 called the “head” and
“tail” of an arrow. A Calabi-Yau 4-algebra consists of the following
data.

1 A quiver Q = (Q0,Q1, h : Q1 → Q0, t : Q1 → Q0) .
2 A map A : Q1 → CQ such that Ar := A(r) ∈ eh(r)CQet(r).
3 A symmetric function q : Q1 × Q1 → C such that

1 q(r , s) = 0 unless r and s have the same underlying edge are
oppositely oriented. That is to say, h(r) = t(s) and
h(s) = t(r).

2 q is nondegenerate – meaning that the matrix q(r , s) is
invertible.

3
∑

r ,s∈Q1
q(r , s)ArAs = 0 mod [CQ,CQ] .

Remarkably, this can be precisely translated into the structure of a
(0, 2) theory.
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(0, 2) theories from Calabi-Yau 4 algebras

Essentially, the map A : Q1 → CQ such that
Ar := A(r) ∈ eh(r)CQet(r) specifies both the J and E terms.
Furthermore the condition∑

r ,s∈Q1

q(r , s)ArAs = 0 mod [CQ,CQ]

is precisely the constraint that∑
a

Ea(Φi )J
a(Φi ) = 0.
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OP2(−1)⊕OP2(−2)→ P2
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OP2(−1)⊕OP2(−2)→ P2
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Figure: Underlying quiver corresponding to OP2 (−1)⊕OP2 (−2)→ P2
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Dualities

Figure: Translations ↔ Dualities, From [R.E., S. Franco arXiv:1112.1132]

Richard Eager Universität Heidelberg Two dimensional N = (0, 2) theories and Calabi-Yau 4-algebras



Supersymmetric Theories
Dualities

Deformations

Previous applications of Calabi-Yau algebras

Equivalence of A-maximization and volume minimization
[Butti-Zaffaroni ’05] [R.E. ’10]

Matching of superconformal index

D3 branes – [R.E., J. Schmude, Y. Tachikawa]
arXiv:1207.0573

M2 branes – [R.E., J. Schmude arXiv:1305.3547]

Matching of protected operators [R.E. arXiv:1510.04078]

Many of these results generalize to 2d theories!
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Motivation from Holography

Gauge Theory

R3,1 × X6

N D3 branes
X6 Calabi-Yau 6-manifold

Gravity Theory

AdS5 × L5

N units of RR-flux
L5 Sasaki-Einstein 5-manifold

Figure: N D3-branes
Sd-1

τ

Figure: AdS Space-Time
Richard Eager Universität Heidelberg Two dimensional N = (0, 2) theories and Calabi-Yau 4-algebras



Supersymmetric Theories
Dualities

Deformations

Goal: Match Closed String States in the large-N limit

Gauge Theory

R3,1 × X6

Closed strings:

HC•(CQ/∂W )

Gravity Theory

AdS5 × L5

Closed strings:

HP•(X , π = 0)

Sd-1

τ
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N = 4 SYM

N D3 branes filling R1,3 in R1,3 × C3.

N = 4 SYM has superpotential

W = Tr (XYZ − XZY )

where X ,Y ,Z are adjoint-valued chiral superfields.

Superpotential algebra

A = C〈x , y , z〉/(xy − yx , yz − zy , zx − xz) ∼= C[x , y , z ]

Richard Eager Universität Heidelberg Two dimensional N = (0, 2) theories and Calabi-Yau 4-algebras



Supersymmetric Theories
Dualities

Deformations

Protected operators in N = 4 SYM

N = 4 SYM has three adjoint chiral scalar superfields Φ1,Φ2,Φ3.
Their interactions are described by the superpotential

W = Tr Φ1
[
Φ2,Φ3

]
.

Consider an operator of the form

O = T z1z2...zk = Tr Φz1Φz2 . . .Φzk .

If T z1z2...zk is symmetric in its indices, then the operator is in a
short representation of the superconformal algebra. If T z1z2...zk is
not symmetric, then the operator is a descendant, because the
commutators [Φzi ,Φzj ] are derivatives of the superpotential W
[Witten ’98].
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Matching protected operators in N = 4 SYM

Under the AdS/CFT dictionary, a scalar excitation Φ in AdS
obeying

(�AdS5 −m2)Φ = 0

with asymptotics ρ−∆ near the boundary of AdS (ρ→∞) is dual
to an operator of scaling dimension

m2 = ∆(∆− d)→ ∆± =
d

2
±
√

d2

4
= m2
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Matching protected operators in N = 4 SYM

The operator

O = Tr Φz1Φz2 . . .Φzk

has conformal dimension k and is
dual to a supergravity state of
spin zero and mass

m2 = k(k − 4).

H. J. KIM, L. J. ROMANS, AND P. van NIEUVPENHUIZEN

45-

32 4

21-

12-

a
h~ 0 p

—( y
—2e )Y'( p)

——ek(k+4)Y( p), k=2, 3, . . .
(2.47)

Iio+ Iiowhile the two complex fields b&'„'+ and bz", in (2.41)
have masses e (k+2) . The field bz'„'+ is the complex
conjugate of b plo —because the four-index antisymmetric
tensor is real.
We now discuss the modes contained in the fields A -,

and B. These fields are purely fluctuations and contain
no background parts. %'e expand them into spherical har-
monics as follows:

5-

C

4 e

a
aPy8

05 k

FIG. 2. Mass spectrum of scalars.

3„„=ga p'„(x)Y '(y ),
A„~=+[a„'(x)Y '(y)+a&'(x)D~ Y' '(y)],

A~p ——+[a "(x)Y["p](y)+a '(x)D[~Yp'](y)],
B=+B '(x) Y '(y) .

We choose the Lorentz-type gauges

DA p ——0, DA~p ——0

(2.48)

(2.49)
branch of (2.34), namely at k =0. We summarize the re-
sults of a11 scalar modes in Fig. 2.
Diagonal equations. The remaining fields, b„„in a„

and P '4 in h(~p) as well as H(z ) in h&, have diagonal
fie1d equations which read

(M a+x6 )«b z
' Y[''p]+—=0 [from (2. 19)],

( x+CI« —2e )(t "Y(~p)——0 [from (E3.1)],
l I) p I) ~ I
[T(+x++y)H(pv)+e H(pv) D(pD Hv)k

(2.41)

(2.42)

+—,'D(„D )HI~]Y ' =0 [from (El. 1)] .
(2.43)

The last equation can be diagonalized for k ) 1 by

which can be implemented by first fixing the transversal
I5part of A in 6A p ——D Ap—DpA to gauge a =0, and

then fixing the D A„part of 6A „=D Az—D&A to set
Il
a& ——0. The on1y gauge transformations which respect
these gauges have y-independent A„(x), which are the
usual gauge parameters for az„= (x). Thus we may use

I)the expansion in (2.48) with a„'=a '=0. Substituting
these expansions into the field equations yields

[(Max+ «)a„z+2iee z "(3 a,„']Y '=0, (2.50)

++«—6e )a Y[ p] +2iea e pr Dr Y

2(D~aq')(D[—Yp])=0, (2.51)

(Max+ «
—4e )a 'Y '+(D"a&'„)(D Y ')=0, (2.52)

H(~„) P(q„)+D(„D,——)( , n. 12eb) j[(k—+1—)(k+3)] .
(E3 +xCly)B 'Y' '=0. (2.53)

(2.44)

The traceless field P(&v) is then transversal on-shell from
(2.30) and satisfies the Einstein equation

I&oWe recall that the spherical harmonies Y~ p~ are not
only eigenfunctions of 6, but also of the operator

[Ein—k(k+4)e ]P(„„) 0, ——
where Ein stands for the Einstein operator

(2.45) ( D )Y[ap] —=cap Dr Y[sp]

Rp,'(g„„+h„',) 4e (g„„+h„' )=0—. (2.46)

This clearly demonstrates that h& is the massless gravi-
ton, as expected.

I[4 ~The real scalars P ' in (2.42) have masses

2R~„'"(P(p ))—8e P(„„) (O +2e——)P(„„).
Here R„',' is the Ricci tensor of five-dimensional space-
time. One should not be confused with Rz ' and the orgi-
nial R„. Recall that R& is the pv component of the full
Ricci tensor in ten dimensions. For k =0, the (El) equa-
tion, together with (2.21) and (2.40) yields

(*D)Y[ ' p] = +2l e( k +2 )Y["p]'' (2.55)

Collecting all terms with a given spherical harmonic,
one gets the d =5 field equations

Since (*D)(*D)=4( y
—6e ), we can divide the Y[ p] into

YI~p~ and Yl~p~, where

(*D)Y['p] =+2i(—«+6e ) Y['p] (2.54)

Since

(—Cl +6 ')Y"—=—b. ", —,= '(k+ )'Y '—

we thus have

Figure: From Kim-Romans-van
Nieuwenhuizen [Phys.Rev. D32
(1985) 389]
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Goal: Test AdS/CFT by small deformations

N = 4 SYM has superpotential

W = Tr (XYZ − XZY ) .

What happens when we deform it by giving a mass to one of the
scalars

W = Tr
(
XYZ − XZY + mZ 2

)
or deform the coupling constants?

W = Tr
(
qXYZ − q−1XZY

)
Can we still match the spectrum of protected operators?
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Operators in N = 4 Super Yang-Mills

For X = C3, L5 = S5. The corresponding gauge theory is N = 4
SYM, whose superpotential algebra is

A = C〈x , y , z〉/(xy − yx , yz − zy , zx − xz) ∼= C[x , y , z ]

1 t2 t4 t6 t8 t10 t12 . . .

HC0 1 3 6 10 15 21 28 . . .
HC1 0 0 3 8 15 24 35 . . .
HC2 0 0 0 1 3 6 10 . . .

I(t) 1 3 3 3 3 3 3 . . .

Table: Cyclic homology group dimensions for N = 4 SYM

Elements O ∈ HC0(A) = A/[A,A] are of the form

O = Tr x iy jzk , i , j , k ∈ N≥0
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The β-deformation

The β-deformation of N = 4 super Yang-Mills theory is a quiver
gauge theory with potential W = qxyz − q−1xzy where q = e iβ.
The F-term relations are

xy = q−2yx

yz = q−2zy

zx = q−2xz

The cyclic homology groups were computed by Nuss and Van den
Bergh.
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Chiral Primaries in the β-deformation

Consider an operator O = Tr l1l2 . . . ln, where li is one of the
letters x , y , or z . Suppose that l1 is an x . The F-term conditions
imply that

O = Tr l1l2 . . . ln−1ln = q2(|z|−|y |) Tr lnl1l2 . . . ln−1,

where |x |, |y |, and |z | are the total number of x ’s, y ’s, and z ’s in
the operator O. Thus the single-trace chiral primaries have charges
(k , 0, 0), (0, k , 0), (0, k , 0), (k , k , k) [D. Berenstein, V. Jejjala, R. G.
Leigh]. 1 For q a k-th root of unity, the cyclic homology groups
jump.

1For G = SU(N) there are additional chiral primaries Tr xy ,Tr xz and Tr yz .
This agrees with the perturbative one-loop spectrum of chiral operators found
in [D. Z. Freedman, U. Gursoy].
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Operators in the β-deformation

Cyclic homology gives a prediction for the spectrum of protected
operators in the β-deformation. The corresponding gravity solution
was found by Lunin and Maldacena.

1 t2 t4 t6 t8 t10 t12 . . .

HC0 1 3 3 4 3 3 4 . . .
HC1 0 0 0 2 0 0 2 . . .
HC2 0 0 0 1 0 0 1 . . .

I(t) 1 3 3 3 3 3 3 . . .

Table: Cyclic homology group dimensions for the β-deformation
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Massive Deformation

After adding a mass deformation ∆L = Trmz2, to N = 4 super
Yang-Mills, the superpotential is W = xyz − xzy + mz2. Since z is
massive, it can be integrated out of the Lagrangian using its
equations of motion. The result is W = 1

m [x , y ]2. Both
superpotential algebras are Morita equivalent and have the same Q
cohomology groups. The F-term relations are

[x , y ] = z

[x , z ] = 0

[y , z ] = 0.
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Massive Deformation II

The Q-cohomology for the massive deformation is

1 t3/2 t3 t9/2 t6 t15/2 t9 . . .

HC0 1 2 3 4 5 6 7 . . .
HC1 0 0 0 2 3 4 5 . . .
HC2 0 0 0 0 1 0 1 . . .

I(t) 1 2 3 2 3 2 3 . . .

Table: Cyclic homology group dimensions for the massive deformation

We will compare these protected operators to the short
representations in the KK-spectrum of the exact SUGRA solution
found by Pilch and Warner.
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Pilch-Warner Solution

A new critical point of N = 8 gauge supergravity on AdS5 was
discovered by Khavaev-Pilch-Warner. Pilch and Warner found the
full type IIB supergravity solution.

ds2
10 = ∆−1ds2

AdS5
+ L2∆1ds2

5 (ρ, χ)

ds2
5 (ρ, χ) = (dx IQ−1

IJ dxJ) +
sinh2 χ

ξ2
(x I JIJdx

J)2

ρ and χ are critical points of the supergravity potential. For the
Pilch-Warner critical point ρ = 21/6, χ = 1

2 log 3. The warp-factor
is

∆ = Ω−2

where Ω2 = ξ coshχ.
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Glueball spectrum

The KK-spectrum of glue balls is found by finding solutions of the
warped-Laplacian

L ≡ ∆−1

√
−g5

∂α

(√
−g5∆−1gαβ∂β

)
The short KK multiplets of the graviton exactly match the
prediction from the second cyclic homology group.
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Further applications of cyclic homology

For CY-3 algebras

HCj(A) = 0 for j > 2

This corresponds to the AdS dual theory having no particles of spin
higher than 2.

HC2(A) = Z (A)

So the KK-spectrum of gravitons can be computed from the center
of the superpotential algebra. For the Pilch-Warner solution, this
has been checked explicitly.
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Final Remarks

2d gauge theories

Found a precise relationship between geometry and physics. Many
exciting directions!

Deformations

We have shown how to compare the protected fields on both sides
of the AdS/CFT correspondence at large-N.

Further extension to finite N is possible, although the cyclic
homology groups become much harder to compute.
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Thank you for listening!
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