Elliptic algebras and large-N supersymmetric gauge theories

Peter Koroteev

1510.00972 1601.08238 with A. Sciarappa and in progress with S. Gukov

Talk at conferenceSupersymmetric TheoriesDualities and DeformationsBern, SwitzerlandJuly 4th 2016

Large-N Gauge Theories

Gauge theories are known to have effective descriptions when the number of colors is large U(N) $N \to \infty$

For supersymmetric gauge theories we expect to compute the effective large-N theory exactly

There are plenty of examples in the literature

N=2 Gauge Theories

- We focus on N=2 gauge theories which have Seiberg-Witten description in IR
- At the moment we have plethora of exact results for those theories thanks to Nekrasov's computation of instanton partition functions
- Nekrasov's original work has been greatly extended in to:
- various supergravity backgrounds (e.g. spheres)
- quiver gauge theories
- five and six-dimensional theories on $X_D = \mathbb{R}^4 \times \Sigma$
- low dimensional theories

N=2 Gauge Theories

- We focus on N=2 gauge theories which have Seiberg-Witten description in IR
- At the moment we have plethora of exact results for those theories thanks to Nekrasov's computation of instanton partition functions
- Nekrasov's original work has been greatly extended in to:
- various supergravity backgrounds (e.g. spheres)
- quiver gauge theories
- five and six-dimensional theories on $X_D = \mathbb{R}^4 \times \Sigma$
- low dimensional theories

We shall study theories with adjoint matter on

$$X_3 = \mathbb{C}_{\epsilon_1} \times S^1_{\gamma} \qquad \qquad X_5 = \mathbb{C}_{\epsilon_1} \times \mathbb{C}_{\epsilon_2} \times S^1_{\gamma}$$

Lagrangian depends on twisted masses μ_i and FI parameters τ_i and $\mathcal{N}=2^*$ mass $t=e^m$

Lagrangian depends on twisted masses μ_i and FI parameters τ_i and $\mathcal{N} = 2^*$ mass $t = e^m$

Partition function computed by localization for N=2

$$\mathcal{B} \sim {}_{2}\phi_{1}\left(t, t\frac{\mu_{1}}{\mu_{2}}, q\frac{\mu_{1}}{\mu_{2}}; q; \frac{\tau_{1}}{\tau_{2}}\right) \qquad q = e^{\epsilon_{1}}$$

Lagrangian depends on twisted masses μ_i and FI parameters τ_i and $\mathcal{N} = 2^*$ mass $t = e^m$

Partition function computed by localization for N=2

$$\mathcal{B} \sim {}_{2}\phi_{1}\left(t, t\frac{\mu_{1}}{\mu_{2}}, q\frac{\mu_{1}}{\mu_{2}}; q; \frac{\tau_{1}}{\tau_{2}}\right) \qquad q = e^{\epsilon_{1}}$$

is the eigenstate of the trigonometric Ruijsenaars-Schneider system!

$$D^{(1)}\mathcal{B} = (\mu_1 + \mu_2)\mathcal{B} \qquad D^{(1)} \sim \sum_{i \neq j} \frac{t\tau_i - \tau_j}{\tau_i - \tau_j} e^{\hbar \partial_{\log \tau_i}}$$

For T[U(N)] quiver

 $D^{(k)}\mathcal{B} = \left\langle W_k^{U(n)} \right\rangle \mathcal{B}$

In other words, the eigenvalue of tRS Hamiltonian is a VEV of background Wilson loop around the compact circle

For T[U(N)] quiver

 $D^{(k)}\mathcal{B} = \left\langle W_k^{U(n)} \right\rangle \mathcal{B}$

In other words, the eigenvalue of tRS Hamiltonian is a VEV of background Wilson loop around the compact circle

The Hamiltonians themselves are certain quantizations of the 't-Hooft-vortex loops in the corresponding representation [lto Okuda Taki]

For T[U(N)] quiver

 $D^{(k)}\mathcal{B} = \left\langle W_k^{U(n)} \right\rangle \mathcal{B}$

In other words, the eigenvalue of tRS Hamiltonian is a VEV of background Wilson loop around the compact circle

The Hamiltonians themselves are certain quantizations of the 't-Hooft-vortex loops in the corresponding representation [Ito Okuda Taki]

The eigenvalue problem itself can be realized via S-duality wall in 4d N=2* theory [Gaiotto Witten] [Bullimore Kim PK] [Gaiotto PK]

For T[U(N)] quiver

 $D^{(k)}\mathcal{B} = \left\langle W_k^{U(n)} \right\rangle \mathcal{B}$

In other words, the eigenvalue of tRS Hamiltonian is a VEV of background Wilson loop around the compact circle

The Hamiltonians themselves are certain quantizations of the 't-Hooft-vortex loops in the corresponding representation [lto Okuda Taki]

The eigenvalue problem itself can be realized via S-duality wall in 4d N=2* theory [Gaiotto Witten] [Bullimore Kim PK] [Gaiotto PK]

We have just constructed a (complex) representation of the double affine Hecke algebra (DAHA) [PK Gukov in prog] tRS Hamiltonians form a subalgebra [Cherednik] [Oblomkov]

Elliptic Generalization

3d theory describes trigonometric model. How can we generalize the construction to describe the elliptic model?

Elliptic Generalization

- 3d theory describes trigonometric model. How can we generalize the construction to describe the elliptic model?
- Couple 3d theory to 5d theory whose Seiberg-Witten solution gives elliptic Ruijsenaars model [Nawata] [Bullimore Kim PK]
- Gauging global symmetry of 3d theory by gauge group of bulk 5d theory on $X_5 = \mathbb{C}_{\epsilon_1} \times \mathbb{C}_{\epsilon_2} \times S^1_{\gamma}$

Elliptic Generalization

3d theory describes trigonometric model. How can we generalize the construction to describe the elliptic model?

- Couple 3d theory to 5d theory whose Seiberg-Witten solution gives elliptic Ruijsenaars model [Nawata] [Bullimore Kim PK]
- Gauging global symmetry of 3d theory by gauge group of bulk 5d theory on $X_5 = \mathbb{C}_{\epsilon_1} \times \mathbb{C}_{\epsilon_2} \times S^1_{\gamma}$

$$D_{p,q,t}^{(1)} \sim \sum \frac{\theta(t\frac{\tau_i}{\tau_j}|p)}{\theta(q\frac{\tau_i}{\tau_j}|p)} e^{\hbar\partial_{\log\tau_i}} \qquad D_{p,q,t}^{(k)} \mathcal{Z}^{5d/3d} = \left\langle W_{\Lambda^k}^{U(n)} \right\rangle \mathcal{Z}^{5d/3d}$$

$$\epsilon_2 \to 0$$

Gauge/Integrability duality

quantum eRS model	5d/3d theory
number of particles n	rank 3d flavor group / 5d gauge group
particle positions $ au_j$	3d Fayet-Iliopoulos parameters
interaction coupling t	3 d $\mathcal{N}=2^*$ / 5 d $\mathcal{N}=1^*$ deformation $e^{-i\gamma m}$
shift parameter q	Omega background $e^{i\gamma\widetilde{\epsilon}_1}$
elliptic deformation p	5d instanton parameter $Q = e^{-8\pi^2 \gamma/g_{YM}^2}$
eigenvalues	$\langle W_{\Box}^{U(n)} \rangle$ for 5d $U(n)$ in NS limit
eigenfunctions	$Z_{\text{inst}}^{5d/3d}$ in NS limit at fixed μ_a

Gauge/Integrability duality

quantum eRS model	5d/3d theory
number of particles n	rank 3d flavor group / 5d gauge group
particle positions $ au_j$	3d Fayet-Iliopoulos parameters
interaction coupling t	3 d $\mathcal{N}=2^*$ / 5 d $\mathcal{N}=1^*$ deformation $e^{-i\gamma m}$
shift parameter q	Omega background $e^{i\gamma\widetilde{\epsilon}_1}$
elliptic deformation p	5d instanton parameter $Q = e^{-8\pi^2 \gamma/g_{YM}^2}$
eigenvalues	$\langle W_{\Box}^{U(n)} \rangle$ for 5d $U(n)$ in NS limit
eigenfunctions	$Z_{\rm inst}^{5d/3d}$ in NS limit at fixed μ_a

Now we study large-n behavior of the operators (eigenvalues) and the eigenfunctions

Consider partition λ of k < n (assume p=0)

Specify $\mu_a = q^{\lambda_a} t^{n-a}$, a = 1, ..., n for T[U(n)] theory

Consider partition λ of k < n (assume p=0)Specify $\mu_a = q^{\lambda_a} t^{n-a}$ $a = 1, \dots, n$ for T[U(n)] theoryRecall that $q = e^{\epsilon} = e^{\hbar}$ and $t = e^m$

Partition function series truncates to Macdonald polynomials! $D_{n,\vec{\tau}}^{(1)}(q,t)P_{\lambda}(\vec{\tau};q,t) = E_{tRS}^{(\lambda;n)}P_{\lambda}(\vec{\tau};q,t)$

Partition function series truncates to Macdonald polynomials! $D_{n,\vec{\tau}}^{(1)}(q,t)P_{\lambda}(\vec{\tau};q,t) = E_{tRS}^{(\lambda;n)}P_{\lambda}(\vec{\tau};q,t)$

E.g. k=2 $\mathcal{B}(\tau_1, \tau_2; t^{-1/2}q, t^{1/2}q) = P_{\Box\Box}(\tau_1, \tau_2; q, t)$ $\mathcal{B}(\tau_1, \tau_2; t^{-1/2}, t^{-1/2}q^2) = P_{\Box}(\tau_1, \tau_2 | q, t).$

Partition function series truncates to Macdonald polynomials! $D_{n,\vec{\tau}}^{(1)}(q,t)P_{\lambda}(\vec{\tau};q,t) = E_{tRS}^{(\lambda;n)}P_{\lambda}(\vec{\tau};q,t)$

E.g. k=2 $\mathcal{B}(\tau_1, \tau_2; t^{-1/2}q, t^{1/2}q) = P_{\Box}(\tau_1, \tau_2; q, t)$ $\mathcal{B}(\tau_1, \tau_2; t^{-1/2}, t^{-1/2}q^2) = P_{\Box}(\tau_1, \tau_2 | q, t).$

Their exact form depends on n

$$P_{(2,0)}(\tau_1, \tau_2; q, t) = \tau_1 \tau_2 + \frac{1 - qt}{(1+q)(1-t)}(\tau_1^2 + \tau_2^2)$$

Change of Variables

However, after change of variables

$$p_m = \sum_{l=1}^n \tau_l^m$$

Macdonald polynomials depend only on k and the partition

$$P_{\Box} = \frac{1}{2}(p_1^2 - p_2), \qquad P_{\Box} = \frac{1}{2}(p_1^2 - p_2) + \frac{1 - qt}{(1 + q)(1 - t)}p_2$$

Change of Variables

However, after change of variables

$$p_m = \sum_{l=1}^n \tau_l^m$$

Macdonald polynomials depend only on k and the partition

$$P_{\Box} = \frac{1}{2}(p_1^2 - p_2), \qquad P_{\Box} = \frac{1}{2}(p_1^2 - p_2) + \frac{1 - qt}{(1 + q)(1 - t)}p_2$$

Starting with Fock vacuum

Construct Hilbert space $a_{-\lambda}|0\rangle \leftrightarrow p_{\lambda}$

for each partition $a_{-\lambda}|0\rangle = a_{-\lambda_1} \cdots a_{-\lambda_l}|0\rangle$

Free boson realization

$$[a_m, a_n] = m \frac{1 - q^{|m|}}{1 - t^{|m|}} \delta_{m+n,0}$$

(more involved with p)

Change of Variables

However, after change of variables

$$p_m = \sum_{l=1}^n \tau_l^m$$

Macdonald polynomials depend only on k and the partition

$$P_{\Box} = \frac{1}{2}(p_1^2 - p_2), \qquad P_{\Box} = \frac{1}{2}(p_1^2 - p_2) + \frac{1 - qt}{(1 + q)(1 - t)}p_2$$

Starting with Fock vacuum $|0\rangle$

Construct Hilbert space $a_{-\lambda}|0\rangle \leftrightarrow p_{\lambda}$

for each partition

$$a_{-\lambda}|0\rangle = a_{-\lambda_1}\cdots a_{-\lambda_l}|0\rangle$$

Free boson realization

(more involved with p)

$$[a_m, a_n] = m \frac{1 - q^{|m|}}{1 - t^{|m|}} \delta_{m+n,0}$$

Vortex series encodes all states! Now need to describe eigenvalues

Introduce vertex operators

[Ding lohara]

$$\eta(z) =: \exp\left(-\sum_{k \neq 0} \frac{1 - t^k}{k} a_k z^{-k}\right):$$

$$\phi(z) = \exp\left(\sum_{n>0} \frac{1-t^n}{1-q^n} a_{-n} \frac{z^n}{n}\right)$$

Define $\phi_n(\tau) = \prod_{i=1}^n \phi(\tau_i)$

Introduce vertex operators

[Ding lohara]

$$\eta(z) =: \exp\left(-\sum_{k \neq 0} \frac{1 - t^k}{k} a_k z^{-k}\right):$$

$$\phi(z) = \exp\left(\sum_{n>0} \frac{1-t^n}{1-q^n} a_{-n} \frac{z^n}{n}\right)$$

Define $\phi_n(\tau) = \prod_{i=1}^n \phi(\tau_i)$ then $[\eta(z)]_1 \phi_n(\tau) |0\rangle = \left[t^{-n} + t^{-n+1} (1 - t^{-1}) D_{n,\vec{\tau}}^{(1)}(q,t) \right] \phi_n(\tau) |0\rangle$ Assuming $|\mathbf{t}| < \mathbf{I}$ $\mathcal{E}_1^{(\lambda)} = \lim_{n \to \infty} \left[t^{-n+1} (1 - t^{-1}) E_{tRS}^{(\lambda;n)} \right]$

Introduce vertex operators

[Ding lohara]

$$\eta(z) =: \exp\left(-\sum_{k \neq 0} \frac{1 - t^k}{k} a_k z^{-k}\right):$$

$$\phi(z) = \exp\left(\sum_{n>0} \frac{1-t^n}{1-q^n} a_{-n} \frac{z^n}{n}\right)$$

Define $\phi_n(\tau) = \prod_{i=1}^n \phi(\tau_i)$ then $[\eta(z)]_1 \phi_n(\tau) |0\rangle = \left[t^{-n} + t^{-n+1} (1 - t^{-1}) D_{n,\vec{\tau}}^{(1)}(q,t) \right] \phi_n(\tau) |0\rangle$ Assuming $|\mathbf{t}| < \mathbf{I}$

$$\mathcal{E}_1^{(\lambda)} = \lim_{n \to \infty} \left[t^{-n+1} (1 - t^{-1}) E_{tRS}^{(\lambda;n)} \right]$$

For elliptic model replace

[Feigin Hashizume Hoshino Shiraishi Yanagida]

$$\eta(z; pq^{-1}t) = \exp\left(\sum_{n>0} \frac{1-t^{-n}}{n} \frac{1-(pq^{-1}t)^n}{1-p^n} a_{-n}z^n\right) \exp\left(-\sum_{n>0} \frac{1-t^n}{n} a_n z^{-n}\right)$$

Assuming $|\mathbf{t}| < \mathbf{I}$ $\mathcal{E}_{1}^{(\lambda)}(p) = \lim_{n \to \infty} \left[t^{-n+1} (1 - t^{-1}) \frac{(pt^{-1}; p)_{\infty} (ptq^{-1}; p)_{\infty}}{(p; p)_{\infty} (pq^{-1}; p)_{\infty}} E_{eRS}^{(\lambda; n)}(p) \right]$

For elliptic model replace

[Feigin Hashizume Hoshino Shiraishi Yanagida]

$$\eta(z; pq^{-1}t) = \exp\left(\sum_{n>0} \frac{1-t^{-n}}{n} \frac{1-(pq^{-1}t)^n}{1-p^n} a_{-n}z^n\right) \exp\left(-\sum_{n>0} \frac{1-t^n}{n} a_n z^{-n}\right)$$

From gauge theory we can compute

$$\frac{(pt^{-1};p)_{\infty}(ptq^{-1};p)_{\infty}}{(p;p)_{\infty}(pq^{-1};p)_{\infty}}E_{eRS}^{(\lambda;n)}(p) = \left\langle W_{\Box}^{U(1)}\right\rangle E_{eRS}^{(\lambda;n)}(p) = \left\langle W_{\Box}^{U(n)}\right\rangle\Big|_{\lambda}$$

Assuming |t|<1

$$\mathcal{E}_{1}^{(\lambda)}(p) = \lim_{n \to \infty} \left[t^{-n+1} (1-t^{-1}) \frac{(pt^{-1}; p)_{\infty} (ptq^{-1}; p)_{\infty}}{(p; p)_{\infty} (pq^{-1}; p)_{\infty}} E_{eRS}^{(\lambda; n)}(p) \right]$$

For elliptic model replace

[Feigin Hashizume Hoshino Shiraishi Yanagida]

$$\eta(z; pq^{-1}t) = \exp\left(\sum_{n>0} \frac{1-t^{-n}}{n} \frac{1-(pq^{-1}t)^n}{1-p^n} a_{-n} z^n\right) \exp\left(-\sum_{n>0} \frac{1-t^n}{n} a_n z^{-n}\right)$$

U(1) Instantons

Heisenberg algebra appears in the study of moduli space of U(I) (non-commutative) instantons [Nakjima] [Schiffmann Vaserot]

U(1) Instantons

Heisenberg algebra appears in the study of moduli space of U(I) (non-commutative) instantons [Nakjima] [Schiffmann Vaserot]

Physically 5d theory on $X_5 = \mathbb{C}_{\epsilon_1} \times \mathbb{C}_{\epsilon_2} \times S^1_{\gamma}$

Instanton - KK monopole propagating along the compact circle

KK modes yield different topological sectors

U(1) Instantons

Heisenberg algebra appears in the study of moduli space of U(I) (non-commutative) instantons [Nakjima] [Schiffmann Vaserot]

Physically 5d theory on $X_5 = \mathbb{C}_{\epsilon_1} \times \mathbb{C}_{\epsilon_2} \times S^1_{\gamma}$

Instanton - KK monopole propagating along the compact circle

KK modes yield different topological sectors

Higgs branch of the 3d N=2 ADHM quiver gauge theory on $\mathbb{C} \times S^1_{\gamma}$

$$\mathcal{M}_{k,1}$$

Quantum Cohomology

Using supersymmetry we can effectively describe quantum cohomology (K-theory) of the instanton moduli space $\mathcal{M}_{k,1}$

We need to find the twisted chiral ring of the ADHM gauge theory-Jacobian ring for effective twisted superpotential

$$H_T^{\bullet}(\mathcal{M}_{k,1}) \simeq \frac{\{\sigma_1, \dots \sigma_s\}}{\{\partial \widetilde{\mathcal{W}}/\partial \sigma_s = 0\}}$$

[Nekrasov Shatashvili]

Quantum_{e1}Cohomology

Using supersymmetry we can effectively describe quantum cohomology (K-theory) of the instanton moduli space $\mathcal{M}_{k,1}$

We need to find the twisted chiral ring of the ADHM gauge theory— Jacobian ring for effective twisted superpotential

$$H_{T}^{\bullet}(\mathcal{M}_{k,1}) \simeq \frac{\{\sigma_{1}, \dots, \sigma_{s}\}}{\{\partial \widetilde{\mathcal{W}}/\partial \sigma_{s} = 0\}}$$
[Nekrasov Shatashvili]

$$(\sigma_{s} - 1) \prod_{\substack{t=1\\t\neq s}}^{k} \frac{(\sigma_{s} - q \widetilde{\sigma}_{t})(\sigma_{s} - t^{-1}\sigma_{t})}{(\sigma_{s} - \sigma_{t})(\sigma_{s} - q t^{-1}\sigma_{t})} = \frac{\widetilde{p}}{\sqrt{qt^{-1}}} (1 - qt^{-1}\sigma_{s}) \prod_{\substack{t=1\\t\neq s}}^{k} \frac{(\sigma_{s} - q^{-1}\sigma_{t})(\sigma_{s} - t\sigma_{t})}{(\sigma_{s} - \sigma_{t})(\sigma_{s} - q^{-1}t\sigma_{t})}$$

where $\sigma_s = e^{i\gamma\Sigma_s}, q = e^{i\gamma\epsilon_1}, t = e^{-i\gamma\epsilon_2}$ $\widetilde{p} = e^{-2\pi\xi}$ Fl coupling

Quantum_{e1}Cohomology

Using supersymmetry we can effectively describe quantum cohomology (K-theory) of the instanton moduli space $\mathcal{M}_{k,1}$

We need to find the twisted chiral ring of the ADHM gauge theory— Jacobian ring for effective twisted superpotential

$$H_{T}^{\bullet}(\mathcal{M}_{k,1}) \simeq \frac{\{\sigma_{1}, \dots, \sigma_{s}\}}{\{\partial \widetilde{\mathcal{W}}/\partial \sigma_{s} = 0\}}$$
[Nekrasov Shatashvili]

$$(\sigma_{s} - 1) \prod_{\substack{t=1\\t\neq s}}^{k} \frac{(\sigma_{s} - q \sigma_{t})(\sigma_{s} - t^{-1}\sigma_{t})}{(\sigma_{s} - \sigma_{t})(\sigma_{s} - q t^{-1}\sigma_{t})} = \frac{\widetilde{p}}{\sqrt{qt^{-1}}} (1 - qt^{-1}\sigma_{s}) \prod_{\substack{t=1\\t\neq s}}^{k} \frac{(\sigma_{s} - q^{-1}\sigma_{t})(\sigma_{s} - t\sigma_{t})}{(\sigma_{s} - \sigma_{t})(\sigma_{s} - q^{-1}t\sigma_{t})}$$

where $\sigma_s = e^{i\gamma\Sigma_s}, q = e^{i\gamma\epsilon_1}, t = e^{-i\gamma\epsilon_2}$ $\widetilde{p} = e^{-2\pi\xi}$ Fl coupling

Calogero Hamiltonian contains the operator of quantum multiplication in small quantum cohomology ring of the instanton moduli space

The Duality

Eigenvalues at large-n

[PK Sciarappa]

$$\left\langle W_{\Box}^{U(n)} \right\rangle \Big|_{\lambda} \sim \left| \mathcal{E}_{1}^{(\lambda)} \right|_{\lambda} = 1 - (1 - q)(1 - t^{-1}) \sum_{s} \sigma_{s} \Big|_{\lambda}$$

Wilson line VEV becomes an equivariant Chern character for $\mathcal{M}_{k,1}$

The Duality

Eigenvalues at large-n

[PK Sciarappa]

$$\left\langle W_{\Box}^{U(n)} \right\rangle \Big|_{\lambda} \sim \left| \mathcal{E}_{1}^{(\lambda)} \right|_{\lambda} = 1 - (1 - q)(1 - t^{-1}) \sum_{s} \sigma_{s} \Big|_{\lambda}$$

Wilson line VEV becomes an equivariant Chern character for $\mathcal{M}_{k,1}$

In other words there exists a stable limit of the equivariant Chern character of the universal bundle over the U(n) instanton moduli space in terms of the same character only for U(I) instantons

The Duality

Eigenvalues at large-n

[PK Sciarappa]

$$\left\langle W_{\Box}^{U(n)} \right\rangle \Big|_{\lambda} \sim \left| \mathcal{E}_{1}^{(\lambda)} \right|_{\lambda} = 1 - (1 - q)(1 - t^{-1}) \sum_{s} \sigma_{s} \Big|_{\lambda}$$

Wilson line VEV becomes an equivariant Chern character for $\mathcal{M}_{k,1}$

In other words there exists a stable limit of the equivariant Chern character of the universal bundle over the U(n) instanton moduli space in terms of the same character only for U(1) instantons

elliptic RS	3d ADHM theory	$\mathbf{3d}/\mathbf{5d}$ coupled theory, $n o \infty$
coupling t	twisted mass $e^{-i\gamma\epsilon_2}$	5d $\mathcal{N} = 1^*$ mass deformation $e^{-i\gamma m}$
quantum shift q	twisted mass $e^{i\gamma\epsilon_1}$	Omega background $e^{i\gamma\widetilde{\epsilon}_1}$
elliptic parameter p	FI parameter $\tilde{p} = -p/\sqrt{qt^{-1}}$	5d instanton parameter Q
eigenstates λ	ADHM Coulomb vacua	5d Coulomb branch parameters
eigenvalues	$\langle \operatorname{Tr} \sigma \rangle$	$\langle W_{\Box}^{U(\infty)} \rangle$ in NS limit $\widetilde{\epsilon}_2 \to 0$

Mathematical Results

[Schiffmann Vasserot]

Hall algebra as large-n limit of DAHA

Trigonometric RS at large n

$$\lim_{n \to \infty} K_T(T^* \mathbb{F}_n) \simeq K_{q,t}^{\mathrm{cl}}\left(\widetilde{\mathcal{M}_1}\right)$$

 $\widetilde{\mathcal{M}_1} = \bigoplus_{k=0}^{\infty} \mathcal{M}_{1,k}$ Instanton moduli space

Mathematical Results

[Schiffmann Vasserot]

Hall algebra as large-n limit of DAHA

Trigonometric RS at large n $\lim_{n\to\infty} K_T(T^*\mathbb{F}_n) \simeq K_{q,t}^{\mathrm{cl}}\left(\widetilde{\mathcal{M}_1}\right)$

 $\widetilde{\mathcal{M}_1} = \bigoplus_{k=0}^{\infty} \mathcal{M}_{1,k}$ Instanton moduli space

No mathematical object is known to describe spectrum of elliptic RS Our proposal

$$\mathcal{E}_T^Q(T^*\mathbb{F}_n) := \mathbb{C}[p_i^{\pm 1}, \tau_i^{\pm 1}, Q, t, \mu_i^{\pm 1}] / \mathcal{I}_{\text{eRS}}$$

Large-n limit

$$\lim_{n \to \infty} \mathcal{E}_T^Q(T^* \mathbb{F}_n) \simeq K_{q,t}\left(\widetilde{\mathcal{M}_1}\right)$$

Open questions

Relationships between different elliptic deformations Physics construction for elliptic cohomology

Knot homology

What happens for 6d theories at large n? Holography?