Elliptic algebras and large-N supersymmetric gauge theories

Peter Koroteev

1510.00972 1601.08238 with A. Sciarappa and in progress with S. Gukov

Talk at conference Supersymmetric Theories Dualities and Deformations
Bern, Switzerland July 4th 2016

Large-N Gauge Theories

Gauge theories are known to have effective descriptions when the number of colors is large $\quad U(N) \quad N \rightarrow \infty$

For supersymmetric gauge theories we expect to compute the effective large-N theory exactly

There are plenty of examples in the literature

Large-n limits are manifest in each description!

Large-n limits are manifest in each description!

Large-n limits are manifest in each description!

Large-n limits are manifest in each description!

N=2 Gauge Theories

We focus on N=2 gauge theories which have Seiberg-Witten description in IR

At the moment we have plethora of exact results for those theories thanks to Nekrasov's computation of instanton partition functions

Nekrasov's original work has been greatly extended in to:

- various supergravity backgrounds (e.g. spheres)
- quiver gauge theories
- five and six-dimensional theories on $X_{D}=\mathbb{R}^{4} \times \Sigma$
- low dimensional theories

N=2 Gauge Theories

We focus on N=2 gauge theories which have Seiberg-Witten description in IR

At the moment we have plethora of exact results for those theories thanks to Nekrasov's computation of instanton partition functions

Nekrasov's original work has been greatly extended in to:

- various supergravity backgrounds (e.g. spheres)
- quiver gauge theories
- five and six-dimensional theories on $X_{D}=\mathbb{R}^{4} \times \Sigma$
- low dimensional theories

We shall study theories with adjoint matter on

$$
X_{3}=\mathbb{C}_{\epsilon_{1}} \times S_{\gamma}^{1} \quad X_{5}=\mathbb{C}_{\epsilon_{1}} \times \mathbb{C}_{\epsilon_{2}} \times S_{\gamma}^{1}
$$

3d Theory

$\mathcal{N}=2^{*}$ quiver gauge theory on $X_{3}=\mathbb{C}_{\epsilon_{1}} \times S_{\gamma}^{1}$ $\mathrm{T}[\mathrm{U}(\mathrm{N})]$

$$
T^{*} \mathbb{F}_{N}
$$

Lagrangian depends on twisted masses μ_{i} and FI parameters τ_{i} and $\mathcal{N}=2^{*}$ mass $t=e^{m}$

3d Theory

$\mathcal{N}=2^{*}$ quiver gauge theory on $X_{3}=\mathbb{C}_{\epsilon_{1}} \times S_{\gamma}^{1}$

$\mathrm{T}[\mathrm{U}(\mathrm{N})]$

$$
T^{*} \mathbb{F}_{N}
$$

Lagrangian depends on twisted masses μ_{i} and FI parameters τ_{i}

$$
\text { and } \mathcal{N}=2^{*} \text { mass } t=e^{m}
$$

Partition function computed by localization for $\mathrm{N}=2$

$$
\mathcal{B} \sim{ }_{2} \phi_{1}\left(t, t \frac{\mu_{1}}{\mu_{2}}, q \frac{\mu_{1}}{\mu_{2}} ; q ; \frac{\tau_{1}}{\tau_{2}}\right)
$$

$$
q=e^{\epsilon_{1}}
$$

3d Theory

$\mathcal{N}=2^{*}$ quiver gauge theory on $X_{3}=\mathbb{C}_{\epsilon_{1}} \times S_{\gamma}^{1}$

$\mathrm{T}[\mathrm{U}(\mathrm{N})]$

$$
T^{*} \mathbb{F}_{N}
$$

Lagrangian depends on twisted masses μ_{i} and FI parameters τ_{i}

$$
\text { and } \mathcal{N}=2^{*} \text { mass } t=e^{m}
$$

Partition function computed by localization for $\mathrm{N}=2$

$$
\mathcal{B} \sim{ }_{2} \phi_{1}\left(t, t \frac{\mu_{1}}{\mu_{2}}, q \frac{\mu_{1}}{\mu_{2}} ; q ; \frac{\tau_{1}}{\tau_{2}}\right)
$$

$$
q=e^{\epsilon_{1}}
$$

is the eigenstate of the trigonometric Ruijsenaars-Schneider system!

$$
D^{(1)} \mathcal{B}=\left(\mu_{1}+\mu_{2}\right) \mathcal{B} \quad D^{(1)} \sim \sum_{i \neq j} \frac{t \tau_{i}-\tau_{j}}{\tau_{i}-\tau_{j}} e^{\hbar \partial_{\log \tau_{i}}}
$$

3d A-type quiver

For $T[U(N)]$ quiver

$$
D^{(k)} \mathcal{B}=\left\langle W_{k}^{U(n)}\right\rangle \mathcal{B}
$$

In other words, the eigenvalue of tRS Hamiltonian is a VEV of background Wilson loop around the compact circle

3d A-type quiver

For $\mathrm{T}[\mathrm{U}(\mathrm{N})]$ quiver

$$
D^{(k)} \mathcal{B}=\left\langle W_{k}^{U(n)}\right\rangle \mathcal{B}
$$

In other words, the eigenvalue of tRS Hamiltonian is a VEV of background Wilson loop around the compact circle

The Hamiltonians themselves are certain quantizations of the 't-Hooft-vortex loops in the corresponding representation
[Ito Okuda Taki]

3d A-type quiver

For $\mathrm{T}[\mathrm{U}(\mathrm{N})]$ quiver

$$
D^{(k)} \mathcal{B}=\left\langle W_{k}^{U(n)}\right\rangle \mathcal{B}
$$

In other words, the eigenvalue of tRS Hamiltonian is a VEV of background Wilson loop around the compact circle

The Hamiltonians themselves are certain quantizations of the 't-Hooft-vortex loops in the corresponding representation
[Ito Okuda Taki]
The eigenvalue problem itself can be realized via S-duality wall in 4 d $\mathrm{N}=2$ * theory
[Gaiotto Witten] [Bullimore Kim PK] [Gaiotto PK]

3d A-type quiver

For $\mathrm{T}[\mathrm{U}(\mathrm{N})]$ quiver

$$
D^{(k)} \mathcal{B}=\left\langle W_{k}^{U(n)}\right\rangle \mathcal{B}
$$

In other words, the eigenvalue of tRS Hamiltonian is a VEV of background Wilson loop around the compact circle

The Hamiltonians themselves are certain quantizations of the 't-Hooft-vortex loops in the corresponding representation
[Ito Okuda Taki]
The eigenvalue problem itself can be realized via S-duality wall in 4d $\mathrm{N}=2$ * theory
[Gaiotto Witten] [Bullimore Kim PK] [Gaiotto PK]

We have just constructed a (complex) representation of the double affine Hecke algebra (DAHA) tRS Hamiltonians form a subalgebra
[PK Gukov in prog]
[Cherednik]
[Oblomkov]

Elliptic Generalization

3d theory describes trigonometric model. How can we generalize the construction to describe the elliptic model?

Elliptic Generalization

3d theory describes trigonometric model. How can we generalize the construction to describe the elliptic model?

Couple 3d theory to 5d theory whose Seiberg-Witten solution gives elliptic Ruijsenaars model
[Nawata]
[Bullimore Kim PK]
Gauging global symmetry of 3d theory by gauge group of bulk $5 d$ theory on $X_{5}=\mathbb{C}_{\epsilon_{1}} \times \mathbb{C}_{\epsilon_{2}} \times S_{\gamma}^{1}$

5d U(N)
$\mathrm{N}=1^{*}$

Elliptic Generalization

3d theory describes trigonometric model. How can we generalize the construction to describe the elliptic model?

Couple 3d theory to 5d theory whose Seiberg-Witten solution gives elliptic Ruijsenaars model
[Nawata]
[Bullimore Kim PK]
Gauging global symmetry of 3d theory by gauge group of bulk $5 d$ theory on $X_{5}=\mathbb{C}_{\epsilon_{1}} \times \mathbb{C}_{\epsilon_{2}} \times S_{\gamma}^{1}$

5d U(N) $\mathrm{N}=\mathbf{1}^{*}$

$$
D_{p, q, t}^{(k)} \mathcal{Z}^{5 \mathrm{~d} / 3 \mathrm{~d}}=\left\langle W_{\Lambda^{k}}^{U(n)}\right\rangle \mathcal{Z}^{5 \mathrm{~d} / 3 \mathrm{~d}}
$$

Gauge/Integrability duality

quantum eRS model	5d/3d theory
number of particles n	rank 3d flavor group / 5d gauge group
particle positions τ_{j}	3 d Fayet-Iliopoulos parameters
interaction coupling t	$3 \mathrm{~d} \mathcal{N}=2^{*} / 5 \mathrm{~d} \mathcal{N}=1^{*}$ deformation $e^{-i \gamma m}$
shift parameter q	Omega background $e^{i \gamma \widetilde{\epsilon}_{1}}$
elliptic deformation p	5 d instanton parameter $Q=e^{-8 \pi^{2} \gamma / g_{Y M}^{2}}$
eigenvalues	$\left\langle W_{\square}^{U(n)}\right\rangle$ for $5 \mathrm{~d} U(n)$ in NS limit
eigenfunctions	$Z_{\text {inst }}^{5 d / 3 d}$ in NS limit at fixed μ_{a}

Gauge/Integrability duality

quantum eRS model	5d/3d theory
number of particles n	rank 3d flavor group / 5d gauge group
particle positions τ_{j}	3 d Fayet-Iliopoulos parameters
interaction coupling t	$3 \mathrm{~d} \mathcal{N}=2^{*} / 5 \mathrm{~d} \mathcal{N}=1^{*}$ deformation $e^{-i \gamma m}$
shift parameter q	Omega background $e^{i \gamma \widetilde{\epsilon}_{1}}$
elliptic deformation p	5 d instanton parameter $Q=e^{-8 \pi^{2} \gamma / g_{Y M}^{2}}$
eigenvalues	$\left\langle W_{\square}^{U(n)}\right\rangle$ for $5 \mathrm{~d} U(n)$ in NS limit
eigenfunctions	$Z_{\text {inst }}^{5 d / 3 d}$ in NS limit at fixed μ_{a}

Now we study large-n behavior of the operators (eigenvalues) and the eigenfunctions

Mapping States

Consider partition λ of $k<n$

(assume $\mathrm{p}=0$)

Specify $\mu_{a}=q^{\lambda_{a}} t^{n-a} \quad, \quad a=1, \ldots, n$ for $\mathrm{T}[\mathrm{U}(\mathrm{n})]$ theory

Mapping States

Consider partition λ of $k<n$
 (assume $\mathrm{p}=0$)

Specify $\mu_{a}=q^{\lambda_{a}} t^{n-a} \quad, \quad a=1, \ldots, n$ for $\mathrm{T}[\mathrm{U}(\mathrm{n})]$ theory Recall that $\quad q=e^{\epsilon}=e^{\hbar} \quad$ and $\quad t=e^{m}$

Mapping States

Consider partition λ of $k<n$
 (assume $\mathrm{p}=0$)

Specify $\mu_{a}=q^{\lambda_{a}} t^{n-a}, a=1, \ldots, n$ for $\mathrm{T}[\mathrm{U}(\mathrm{n})]$ theory Recall that $\quad q=e^{\epsilon}=e^{\hbar} \quad$ and $\quad t=e^{m}$

Partition function series truncates to Macdonald polynomials!

$$
D_{n, \vec{\tau}}^{(1)}(q, t) P_{\lambda}(\vec{\tau} ; q, t)=E_{t R S}^{(\lambda ; n)} P_{\lambda}(\vec{\tau} ; q, t)
$$

Mapping States

Consider partition λ of $k<n$

Specify $\mu_{a}=q^{\lambda_{a}} t^{n-a} \quad, \quad a=1, \ldots, n$ for $\mathrm{T}[\mathrm{U}(\mathrm{n})]$ theory Recall that $\quad q=e^{\epsilon}=e^{\hbar} \quad$ and $\quad t=e^{m}$

Partition function series truncates to Macdonald polynomials!

$$
D_{n, \vec{\tau}}^{(1)}(q, t) P_{\lambda}(\vec{\tau} ; q, t)=E_{t R S}^{(\lambda ; n)} P_{\lambda}(\vec{\tau} ; q, t)
$$

E.g. $\mathrm{k}=2$

$$
\begin{aligned}
\mathcal{B}\left(\tau_{1}, \tau_{2} ; t^{-1 / 2} q, t^{1 / 2} q\right) & =P_{\square}\left(\tau_{1}, \tau_{2} ; q, t\right) \\
\mathcal{B}\left(\tau_{1}, \tau_{2} ; t^{-1 / 2}, t^{-1 / 2} q^{2}\right) & =P_{\square}\left(\tau_{1}, \tau_{2} \mid q, t\right) .
\end{aligned}
$$

Mapping States

Consider partition λ of $k<n$

Specify $\mu_{a}=q^{\lambda_{a}} t^{n-a} \quad, \quad a=1, \ldots, n$ for $\mathrm{T}[\mathrm{U}(\mathrm{n})]$ theory Recall that $\quad q=e^{\epsilon}=e^{\hbar} \quad$ and $\quad t=e^{m}$

Partition function series truncates to Macdonald polynomials!

$$
D_{n, \vec{\tau}}^{(1)}(q, t) P_{\lambda}(\vec{\tau} ; q, t)=E_{t R S}^{(\lambda ; n)} P_{\lambda}(\vec{\tau} ; q, t)
$$

E.g. $\mathrm{k}=2$

$$
\begin{aligned}
\mathcal{B}\left(\tau_{1}, \tau_{2} ; t^{-1 / 2} q, t^{1 / 2} q\right) & =P_{\square}\left(\tau_{1}, \tau_{2} ; q, t\right) \\
\mathcal{B}\left(\tau_{1}, \tau_{2} ; t^{-1 / 2}, t^{-1 / 2} q^{2}\right) & =P_{\square}\left(\tau_{1}, \tau_{2} \mid q, t\right) .
\end{aligned}
$$

Their exact form depends on n

$$
P_{(2,0)}\left(\tau_{1}, \tau_{2} ; q, t\right)=\tau_{1} \tau_{2}+\frac{1-q t}{(1+q)(1-t)}\left(\tau_{1}^{2}+\tau_{2}^{2}\right)
$$

Change of Variables

However, after change of variables

$$
p_{m}=\sum_{l=1}^{n} \tau_{l}^{m}
$$

Macdonald polynomials depend only on k and the partition

$$
P_{\square}=\frac{1}{2}\left(p_{1}^{2}-p_{2}\right), \quad P_{\square}=\frac{1}{2}\left(p_{1}^{2}-p_{2}\right)+\frac{1-q t}{(1+q)(1-t)} p_{2}
$$

Change of Variables

Macdonald polynomials depend only on k and the partition

$$
P_{\square}=\frac{1}{2}\left(p_{1}^{2}-p_{2}\right), \quad P_{\square}=\frac{1}{2}\left(p_{1}^{2}-p_{2}\right)+\frac{1-q t}{(1+q)(1-t)} p_{2}
$$

Starting with Fock vacuum $|0\rangle$

Construct Hilbert space $\quad a_{-\lambda}|0\rangle \longleftrightarrow p_{\lambda}$ for each partition $\quad a_{-\lambda}|0\rangle=a_{-\lambda_{1}} \cdots a_{-\lambda_{l}}|0\rangle$

Free boson realization
(more involved with p)

$$
\left[a_{m}, a_{n}\right]=m \frac{1-q^{|m|}}{1-t^{|m|}} \delta_{m+n, 0}
$$

Change of Variables

However, after change of variables

$$
p_{m}=\sum_{l=1}^{n} \tau_{l}^{m}
$$

Macdonald polynomials depend only on k and the partition

$$
P_{\square}=\frac{1}{2}\left(p_{1}^{2}-p_{2}\right), \quad P_{\square}=\frac{1}{2}\left(p_{1}^{2}-p_{2}\right)+\frac{1-q t}{(1+q)(1-t)} p_{2}
$$

Starting with Fock vacuum
Construct Hilbert space $\quad a_{-\lambda}|0\rangle \longleftrightarrow p_{\lambda}$ for each partition $\quad a_{-\lambda}|0\rangle=a_{-\lambda_{1}} \cdots a_{-\lambda_{l}}|0\rangle$

Free boson realization (more involved with p)

$$
\left[a_{m}, a_{n}\right]=m \frac{1-q^{|m|}}{1-t^{|m|}} \delta_{m+n, 0}
$$

Vortex series encodes all states! Now need to describe eigenvalues

Free Boson Realization

Introduce vertex operators
[Ding lohara]

$$
\eta(z)=: \exp \left(-\sum_{k \neq 0} \frac{1-t^{k}}{k} a_{k} z^{-k}\right):
$$

$$
\phi(z)=\exp \left(\sum_{n>0} \frac{1-t^{n}}{1-q^{n}} a_{-n} \frac{z^{n}}{n}\right)
$$

Define $\quad \phi_{n}(\tau)=\prod_{i=1}^{n} \phi\left(\tau_{i}\right)$

Free Boson Realization

Introduce vertex operators
[Ding lohara]

$$
\eta(z)=: \exp \left(-\sum_{k \neq 0} \frac{1-t^{k}}{k} a_{k} z^{-k}\right): \quad \phi(z)=\exp \left(\sum_{n>0} \frac{1-t^{n}}{1-q^{n}} a_{-n} \frac{z^{n}}{n}\right)
$$

Define $\quad \phi_{n}(\tau)=\prod_{i=1}^{n} \phi\left(\tau_{i}\right) \quad$ then

$$
[\eta(z)]_{1} \phi_{n}(\tau)|0\rangle=\left[t^{-n}+t^{-n+1}\left(1-t^{-1}\right) D_{n, \vec{\tau}}^{(1)}(q, t)\right] \phi_{n}(\tau)|0\rangle
$$

Assuming $|\mathrm{t}|<1$

$$
\mathcal{E}_{1}^{(\lambda)}=\lim _{n \rightarrow \infty}\left[t^{-n+1}\left(1-t^{-1}\right) E_{t R S}^{(\lambda ; n)}\right]
$$

Free Boson Realization

Introduce vertex operators
[Ding lohara]

$$
\eta(z)=: \exp \left(-\sum_{k \neq 0} \frac{1-t^{k}}{k} a_{k} z^{-k}\right): \quad \phi(z)=\exp \left(\sum_{n>0} \frac{1-t^{n}}{1-q^{n}} a_{-n} \frac{z^{n}}{n}\right)
$$

Define $\quad \phi_{n}(\tau)=\prod_{i=1}^{n} \phi\left(\tau_{i}\right) \quad$ then

$$
[\eta(z)]_{1} \phi_{n}(\tau)|0\rangle=\left[t^{-n}+t^{-n+1}\left(1-t^{-1}\right) D_{n, \vec{\tau}}^{(1)}(q, t)\right] \phi_{n}(\tau)|0\rangle
$$

Assuming $|\mathrm{t}|<1$

$$
\mathcal{E}_{1}^{(\lambda)}=\lim _{n \rightarrow \infty}\left[t^{-n+1}\left(1-t^{-1}\right) E_{t R S}^{(\lambda ; n)}\right]
$$

For elliptic model replace
[Feigin Hashizume
Hoshino Shiraishi Yanagida]

$$
\eta\left(z ; p q^{-1} t\right)=\exp \left(\sum_{n>0} \frac{1-t^{-n}}{n} \frac{1-\left(p q^{-1} t\right)^{n}}{1-p^{n}} a_{-n} z^{n}\right) \exp \left(-\sum_{n>0} \frac{1-t^{n}}{n} a_{n} z^{-n}\right)
$$

Free Boson Realization

Assuming $|t|<1$

$$
\mathcal{E}_{1}^{(\lambda)}(p)=\lim _{n \rightarrow \infty}\left[t^{-n+1}\left(1-t^{-1}\right) \frac{\left(p t^{-1} ; p\right)_{\infty}\left(p t q^{-1} ; p\right)_{\infty}}{(p ; p)_{\infty}\left(p q^{-1} ; p\right)_{\infty}} E_{e R S}^{(\lambda ; n)}(p)\right]
$$

For elliptic model replace
[Feigin Hashizume
Hoshino Shiraishi Yanagida]
$\eta\left(z ; p q^{-1} t\right)=\exp \left(\sum_{n>0} \frac{1-t^{-n}}{n} \frac{1-\left(p q^{-1} t\right)^{n}}{1-p^{n}} a_{-n} z^{n}\right) \exp \left(-\sum_{n>0} \frac{1-t^{n}}{n} a_{n} z^{-n}\right)$

Free Boson Realization

From gauge theory we can compute

$$
\frac{\left(p t^{-1} ; p\right)_{\infty}\left(p t q^{-1} ; p\right)_{\infty}}{(p ; p)_{\infty}\left(p q^{-1} ; p\right)_{\infty}} E_{e R S}^{(\lambda ; n)}(p)=\left\langle W_{\square}^{U(1)}\right\rangle E_{e R S}^{(\lambda ; n)}(p)=\left.\left\langle W_{\square}^{U(n)}\right\rangle\right|_{\lambda}
$$

Assuming $|t|<1$

$$
\mathcal{E}_{1}^{(\lambda)}(p)=\lim _{n \rightarrow \infty}\left[t^{-n+1}\left(1-t^{-1}\right) \frac{\left(p t^{-1} ; p\right)_{\infty}\left(p t q^{-1} ; p\right)_{\infty}}{(p ; p)_{\infty}\left(p q^{-1} ; p\right)_{\infty}} E_{e R S}^{(\lambda ; n)}(p)\right]
$$

For elliptic model replace
[Feigin Hashizume
Hoshino Shiraishi Yanagida]

$$
\eta\left(z ; p q^{-1} t\right)=\exp \left(\sum_{n>0} \frac{1-t^{-n}}{n} \frac{1-\left(p q^{-1} t\right)^{n}}{1-p^{n}} a_{-n} z^{n}\right) \exp \left(-\sum_{n>0} \frac{1-t^{n}}{n} a_{n} z^{-n}\right)
$$

U(1) Instantons

Heisenberg algebra appears in the study of moduli space of $\mathrm{U}(\mathrm{I})$ (non-commutative) instantons
[Nakjima]
[Schiffmann Vaserot]

U(1) Instantons

Heisenberg algebra appears in the study of moduli space of $\mathrm{U}(\mathrm{I})$ (non-commutative) instantons
[Nakjima]
[Schiffmann Vaserot]
Physically 5d theory on $\quad X_{5}=\mathbb{C}_{\epsilon_{1}} \times \mathbb{C}_{\epsilon_{2}} \times S_{\gamma}^{1}$
Instanton - KK monopole propagating along the compact circle
KK modes yield different topological sectors

U(1) Instantons

Heisenberg algebra appears in the study of moduli space of $\mathrm{U}(\mathrm{I})$ (non-commutative) instantons
[Nakjima]
[Schiffmann Vaserot]
Physically 5d theory on $X_{5}=\mathbb{C}_{\epsilon_{1}} \times \mathbb{C}_{\epsilon_{2}} \times S_{\gamma}^{1}$
Instanton - KK monopole propagating along the compact circle
KK modes yield different topological sectors
Higgs branch of the $3 \mathrm{~d} \mathrm{~N}=2 \mathrm{ADHM}$ quiver gauge theory on $\mathbb{C} \times S_{\gamma}^{1}$

$\mathcal{M}_{k, 1}$

Quantum Cohomology

Using supersymmetry we can effectively describe quantum cohomology (K-theory) of the instanton moduli space $\mathcal{M}_{k, 1}$

We need to find the twisted chiral ring of the ADHM gauge theoryJacobian ring for effective twisted superpotential

$$
H_{T}^{\bullet}\left(\mathcal{M}_{k, 1}\right) \simeq \frac{\left\{\sigma_{1}, \ldots \sigma_{s}\right\}}{\left\{\partial \widetilde{\mathcal{W}} / \partial \sigma_{s}=0\right\}}
$$

[Nekrasov Shatashvili]

Quantum Cohomology

Using supersymmetry we can effectively describe quantum cohomology (K-theory) of the instanton moduli space $\mathcal{M}_{k, 1}$

We need to find the twisted chiral ring of the ADHM gauge theoryJacobian ring for effective twisted superpotential

$$
\begin{gathered}
H_{T}^{\bullet}\left(\mathcal{M}_{k, 1}\right) \simeq \frac{\left\{\sigma_{1}, \ldots \sigma_{s}\right\}}{\left\{\partial \widetilde{\mathcal{W}} / \partial \sigma_{s}=0\right\}} \quad \text { [Nekrasov Shatashvili] } \\
\left(\sigma_{s}-1\right) \prod_{\substack{t=1 \\
t \neq s}}^{k} \frac{\left(\sigma_{s}-q \sigma_{t}\right)\left(\sigma_{s}-t^{-1} \sigma_{t}\right)}{\left(\sigma_{s}-\sigma_{t}\right)\left(\sigma_{s}-q t^{-1} \sigma_{t}\right)}=\frac{\widetilde{p}}{\sqrt{q t^{-1}}}\left(1-q t^{-1} \sigma_{s}\right) \prod_{\substack{t=1 \\
t \neq s}}^{k} \frac{\left(\sigma_{s}-q^{-1} \sigma_{t}\right)\left(\sigma_{s}-t \sigma_{t}\right)}{\left(\sigma_{s}-\sigma_{t}\right)\left(\sigma_{s}-q^{-1} t \sigma_{t}\right)}
\end{gathered}
$$

where

$$
\sigma_{s}=e^{i \gamma \Sigma_{s}}, q=e^{i \gamma \epsilon_{1}}, t=e^{-i \gamma \epsilon_{2}}
$$

$$
\widetilde{p}=e^{-2 \pi \xi}
$$

FI coupling

Quantum Cohomology

Using supersymmetry we can effectively describe quantum cohomology (K-theory) of the instanton moduli space $\mathcal{M}_{k, 1}$

We need to find the twisted chiral ring of the ADHM gauge theoryJacobian ring for effective twisted superpotential

$$
\begin{gathered}
H_{T}^{\bullet}\left(\mathcal{M}_{k, 1}\right) \simeq \frac{\left\{\sigma_{1}, \ldots \sigma_{s}\right\}}{\left\{\partial \widetilde{\mathcal{W}} / \partial \sigma_{s}=0\right\}} \quad \text { [Nekrasov Shatashvili] } \\
\left(\sigma_{s}-1\right) \prod_{\substack{t=1 \\
t \neq s}}^{k} \frac{\left(\sigma_{s}-q \sigma_{t}\right)\left(\sigma_{s}-t^{-1} \sigma_{t}\right)}{\left(\sigma_{s}-\sigma_{t}\right)\left(\sigma_{s}-q t^{-1} \sigma_{t}\right)}=\frac{\widetilde{p}}{\sqrt{q t^{-1}}}\left(1-q t^{-1} \sigma_{s}\right) \prod_{\substack{t=1 \\
t \neq s}}^{k} \frac{\left(\sigma_{s}-q^{-1} \sigma_{t}\right)\left(\sigma_{s}-t \sigma_{t}\right)}{\left(\sigma_{s}-\sigma_{t}\right)\left(\sigma_{s}-q^{-1} t \sigma_{t}\right)}
\end{gathered}
$$

where $\quad \sigma_{s}=e^{i \gamma \Sigma_{s}}, q=e^{i \gamma \epsilon_{1}}, t=e^{-i \gamma \epsilon_{2}} \quad \widetilde{p}=e^{-2 \pi \xi} \quad$ FI coupling
Calogero Hamiltonian contains the operator of quantum multiplication in small quantum cohomology ring of the instanton moduli space

The Duality

Eigenvalues at large-n

> [PK Sciarappa]

$$
\left.\left\langle W_{\square}^{U(n)}\right\rangle\right|_{\lambda} \sim \mathcal{E}_{1}^{(\lambda)}=1-\left.(1-q)\left(1-t^{-1}\right) \sum_{s} \sigma_{s}\right|_{\lambda}
$$

Wilson line VEV becomes an equivariant Chern character for $\mathcal{M}_{k, 1}$

The Duality

Eigenvalues at large-n
[PK Sciarappa]

$$
\left.\left\langle W_{\square}^{U(n)}\right\rangle\right|_{\lambda} \sim \mathcal{E}_{1}^{(\lambda)}=1-\left.(1-q)\left(1-t^{-1}\right) \sum_{s} \sigma_{s}\right|_{\lambda}
$$

Wilson lineVEV becomes an equivariant Chern character for $\mathcal{M}_{k, 1}$
In other words there exists a stable limit of the equivariant Chern character of the universal bundle over the $\mathrm{U}(\mathrm{n})$ instanton moduli space in terms of the same character only for $U(I)$ instantons

The Duality

Eigenvalues at large-n
[PK Sciarappa]

$$
\left.\left\langle W_{\square}^{U(n)}\right\rangle\right|_{\lambda} \sim \mathcal{E}_{1}^{(\lambda)}=1-\left.(1-q)\left(1-t^{-1}\right) \sum_{s} \sigma_{s}\right|_{\lambda}
$$

Wilson lineVEV becomes an equivariant Chern character for $\mathcal{M}_{k, 1}$
In other words there exists a stable limit of the equivariant Chern character of the universal bundle over the $\mathrm{U}(\mathrm{n})$ instanton moduli space in terms of the same character only for $U(I)$ instantons

elliptic RS	3d ADHM theory	3d/5d coupled theory, $n \rightarrow \infty$
coupling t	twisted mass $e^{-i \gamma \epsilon_{2}}$	$5 \mathrm{~d} \mathcal{N}=1^{*}$ mass deformation $e^{-i \gamma m}$
quantum shift q	twisted mass $e^{i \gamma \epsilon_{1}}$	Omega background $e^{i \gamma \widetilde{\epsilon}_{1}}$
elliptic parameter p	FI parameter $\widetilde{p}=-p / \sqrt{q t^{-1}}$	5 d instanton parameter Q
eigenstates λ	ADHM Coulomb vacua	5 d Coulomb branch parameters
eigenvalues	$\langle\operatorname{Tr} \sigma\rangle$	$\left\langle W_{\square}^{U(\infty)}\right\rangle$ in NS limit $\widetilde{\epsilon}_{2} \rightarrow 0$

Mathematical Results

Hall algebra as large-n limit of DAHA
[Schiffmann Vasserot]

Trigonometric RS at large $\mathrm{n} \quad \lim _{n \rightarrow \infty} K_{T}\left(T^{*} \mathbb{F}_{n}\right) \simeq K_{q, t}^{\mathrm{cl}}\left(\widetilde{\mathcal{M}_{1}}\right)$

$$
\widetilde{\mathcal{M}_{1}}=\bigoplus_{k=0}^{\infty} \mathcal{M}_{1, k} \quad \text { Instanton moduli space }
$$

Mathematical Results

Hall algebra as large-n limit of DAHA
Trigonometric RS at large $\mathrm{n} \quad \lim _{n \rightarrow \infty} K_{T}\left(T^{*} \mathbb{F}_{n}\right) \simeq K_{q, t}^{\mathrm{cl}}\left(\widetilde{\mathcal{M}_{1}}\right)$

$$
\widetilde{\mathcal{M}_{1}}=\bigoplus_{k=0}^{\infty} \mathcal{M}_{1, k} \quad \text { Instanton moduli space }
$$

No mathematical object is known to describe spectrum of elliptic RS
Our proposal

$$
\mathcal{E}_{T}^{Q}\left(T^{*} \mathbb{F}_{n}\right):=\mathbb{C}\left[p_{i}^{ \pm 1}, \tau_{i}^{ \pm 1}, Q, t, \mu_{i}^{ \pm 1}\right] / \mathcal{I}_{\mathrm{eRS}}
$$

Large-n limit

$$
\lim _{n \rightarrow \infty} \mathcal{E}_{T}^{Q}\left(T^{*} \mathbb{F}_{n}\right) \simeq K_{q, t}\left(\widetilde{\mathcal{M}_{1}}\right)
$$

Open questions

Relationships between different elliptic deformations Physics construction for elliptic cohomology

Knot homology

What happens for 6d theories at large n? Holography?

