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N = 3 SCFTs

Many examples of N = 0, 1, 2, 4 CFTs are known, both Lagrangian
and non-Lagrangian. But no example of N = 3 SCFT (which was
not N = 4) was known until our work.1 In fact, they were widely
thought not to exist!

Theorem: Every non-gravitational CPT-invariant N = 3 is
automatically N = 4.

Minimal N = 3 multiplet: {Aµ(+1), 3λ(+1
2), 3φ(0), λ(−1

2)}. Its
CPT-conjugate changes the helicities, completing the content into
a N = 4 multiplet. One can also see that the only Lagrangian with
N = 3 automatically has N = 4.

1N = 3 supergravities were known for a long time, but no N = 3 examples
without gravity were known.
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Theory engineering

We are after a theory in four dimensions which, if it exists, has no
semi-classical limit compatible with the N = 3 symmetry.

It turns out that the most robust way of
constructing the 4d N = 3 theories is by
using string theory techniques in 10 and
11d.

More precisely, we will construct a string
setting in 10d with a topological defect.
On the core of this defect we will have a
four dimensional theory coupled to 10d
supergravity. In the IR the 10d
supergravity decouples, leaving the 4d
theory we are after.
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IIB string theory
A good setting for our purposes is IIB string theory (described by
type IIB supergravity at low energies). It contains certain
supergravity defects (“D3-branes”) where N = 4 four dimensional
U(N) SYM lives.

Furthermore, it has a scalar field τ10d, whose restriction to the D3s
gives the τ = θ + i/g2 in the N = 4 Lagrangian.

Montonen-Olive duality on the low energy theory on the D3s

T (U(N), τ) = T
(
U(N),−1

τ

)
(1)

extends to the full 10d string theory:

IIB(N D3s, τ10d) = IIB
(
N D3s, − 1

τ10d

)
(2)
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S-duality orbifolds (“S-folds”)
We want to somehow reduce N = 4→ N = 3. It turns out that
this is possible, by taking an appropriate quotient of the 10d theory.

Choose an element g of the Montonen-Olive duality group. It acts
on the supercharges QI=1,...,4

α as [Kapustin, Witten]

QIα → γ(g)QIα (3)

Simultaneously, act with a U(1) ⊂ SO(6) rotation r on the R6

transverse to the D3s. This acts on the supercharges as

(Q1
α, Q

2
α, Q

3
α, Q

4
α)→ (rQ1

α, rQ
2
α, rQ

3
α, r

−3Q4
α) . (4)

Choosing r = γ−1 we see that generically the quotient by r · γ preserves
three out of the four Qα (and all four if r2 = 1).

Crucially, generically this only makes sense for specific τ ∈ {i, e2πi/3} for
which g(τ) = τ . This means that the weak coupling limit is projected
out!
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F-theory viewpoint: Probing rigid singularities

From a string theory point of view, we will be interested in
understanding the four dimensional physics coming from (probe D3
branes on) F-theory compactifications in the presence of
singularities that do no admit supersymmetric smoothings. I.e. they
cannot be resolved or deformed into a smooth space without
spending energy.

Complex codimension 4 Calabi-Yau singularity in a geometry
with a F-theory limit. There are many such geometries, and
we will only scratch the surface.
Simplest case: Zk orbifolds of C3 × T 2, with non-trivial T 2

action and isolated fixed points.

(Such orbifolds have appeared for two-folds [Dasgupta, Mukhi ’96]
and threefolds [Witten ’96], but in these cases they are deformable.)
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Generalizing the O3 plane
Calabi-Yau fourfolds of the form (C3 × T 2)/Zk can be classified
completely: the orbifold actions preserving susy were classified in
[Morrison, Stevens ’84], [Anno ’03], [Font, López ’04]. We focus on the
cases preserving at least 12 supercharges.

In the F-theory limit, adding D3 brane probes:

k = 1 gives IIB string theory → 4d U(N) N = 4 SYM.

k = 2 gives IIB w/ O3 plane → 4d N = 4 SYM w/ orthogonal or
symplectic groups. (Locally C4/Z2, so at least in some cases such
rigid singularities make perfect physical sense.)

k = 3, 4, 6 give IIB w/ exotic “OF3” plane → 4d N = 3 SCFTs.
[Ferrara, Porrati, Zaffaroni ’98] propose a construction of
exotic AdS5 holographic backgrounds preserving N = 6,
similar to the expected form of the holographic dual of the
N = 3 SCFTs we find.
In [Aharony, Evtikhiev ’15] some properties of these theories
were understood, assuming they existed, but no construction
was known.
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EYAWTK about the O3 plane
It will prove very illuminating to revisit the O3 plane (i.e.
(C3 × T 2)/Z2) from multiple viewpoints, since it is the simplest
case of a complex codimension four singularity with a F-theory lift,
and is relatively well understood.

Worldsheet CFT.
F/M-theory.
Holographic picture.
Field theory.
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Everything but the CFT approach potentially generalizes to
k = 3, 4, 6.



Introduction Revisiting the O3 plane Generalizing the O3 plane SCFT properties Conclusions

Worldsheet description of the O3 plane
We start with IIB string theory on R10 = R4 × C3, and quotient by
I(−1)FLΩ. Here I acts as reflection on the C3:

I : (x, y, z)→ (−x,−y,−z) (5)

while (−1)FLΩ acts on the worlsheet. Its induced effect on the
spacetime fields is easily computed, for instance

(−1)FLΩ:

(
B2

C2

)
→
(
−B2

−C2

)
(6)

If we have a stack of N D3 branes we need to choose an action on
the Chan-Paton factors, which will project U(N) down to an
orthogonal or symplectic group:

O3− Õ3
−

O3+ Õ3
+

Last three are related by Montonen-Olive duality. [Witten ’98])
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F(M)-theory description of the O3 plane
IIB without orientifold is given by M-theory on T 2 in the
vol(T 2)→ 0 limit, we wish to quotient this by the lift of
I(−1)FLΩ.

The I action on the IIB coordinates lifts trivially to a I action on
six of the M-theory coordinates: (x, y, z)→ (−x,−y,−z).

The (−1)FLΩ action acts as

(−1)FLΩ:

(
B2

C2

)
→
(
−B2

−C2

)
(7)

which when rewritten in terms of C3 (which is invariant under the
lift of (−1)FLΩ) implies that

(−1)FLΩ: (p, q)→ (−p,−q) (8)

i.e. an inversion of the T 2: u→ −u. (Denoted by −1 ∈ SL(2,Z))
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F(M)-theory description of the O3 plane
Writing x, y, z, u for the C3 × T 2 coordinates
acted upon by the involution, we thus find

I(−1)FLΩ: (x, y, z, u)→ (−x,−y,−z,−u)

and the total geometry is (C3 × T 2)/Z2. This has
four fixed points at (x, y, z, u) = (0, 0, 0, p), with
p a fixed point of the T 2 under the Z2.

Various observations:
The involution exists for any value of τ .
Close to each fixed point we have C4/Z2: this cannot be
smoothed out in a CY way [Schlessinger ’71] [Morrison, Plesser
’98]. This agrees with the fact that the O3 has no light modes on it.
M2 branes probing C4/Zk: [Aharony, Bergman, Jafferis, Maldacena
’08].
Different O3 types: different discrete fluxes on the fixed points
[Hanany, Kol ’00].
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F(IIB)-theory description of the O3 plane
A holography appetizer

In IIB string theory the C3/I orbifold is non-supersymmetric, while
the O3 preserves 16 supercharges. I discuss the near horizon
geometry, AdS5 × (S5/Z2), which naively is non-supersymmetric.

From the M-theory picture, it is clear what is going on: near
horizon what we have is F-theory on AdS5 × ((S5 × T 2)/Z2), i.e. a
non-trivial SL(2,Z) bundle on the S5/Z2 horizon.

So we do not have the vanilla orbifold, but in addition it has a
non-trivial flat SL(2,Z) duality bundle on top, acting with
−1 ∈ SL(2,Z) as we go round the non-trivial one-cycle in the
S5/Z2 horizon manifold. One can check that the −1 ∈ SL(2,Z)
acting on the sugra spinors restores susy as expected.

The different kinds of orientifolds in this language are classified by
discrete flux: [H3], [F3] ∈ H3(S5/Z2, Z̃) = Z2. [Witten ’98]
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Field theory description of the quotient

A stack of N D3 branes in flat space gives 4d N = 4 U(N) SYM.

Rotations in the transverse R6 manifest themselves as the SU(4)R
R-symmetry group. Implies that I acts as −1 ∈ SO(6)R in the
field theory.

Similarly, IIB SL(2,Z) descends straightforwardly to the SL(2,Z)
duality group of the field theory. In particular

−1 ∈ SL(2,Z)IIB → −1 ∈ SL(2,Z)N=4 (9)

A generic element of SL(2,Z)N=4 is not a symmetry, but −1 is:
(−1)(τ) = −1·τ+0

0·τ−1 = τ .

So we can understand the orientifold projection as a quotient by a
particular symmetry of N = 4 U(N) SYM: U(N)/(ZR2 · Z

SL(2,Z)
2 ).

(In this language we also have a choice of Chan-Paton factors.)
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Recap and strategy
We have discussed four ways of viewing the action of an O3 plane
on a stack of D3 branes:

Worldsheet CFT: a projection of the CFT by I(−1)FLΩ, with
a choice of Chan-Paton factors.
M-theory: M2 branes probing (C3 × T 2)/Z2, with a choice of
discrete torsion on the fixed points.
IIB holography: An orbifold AdS5 × (S5/I) with a nontrivial
flat SL(2,Z) bundle, and choice of discrete [F ], [H] flux.

Field theory: A quotient of U(N) SYM by (ZR2 · Z
SL(2,Z)
2 ),

with a choice of Chan-Paton factors.

Strategy for generalization

Quotient by other possible symmetries of C3 × T 2, S5 or U(N).

The generalization of the CFT approach seems less obvious.
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OF3 planes from M-theory
We start by considering the M-theory picture, given by Zk (k > 2)
quotients of C3 × T 2 leaving isolated fixed points. It turns out that
maximal supersymmetry (N = 3) is preserved only for k = 3, 4, 6,
with action [Font, López ’04]

(x, y, z, u)→ (ωkx, ω
−1
k y, ωkz, ω

−1
k u) (10)

with ωk = exp(2πi/k). (These are known to be terminal Gorenstein
[Morrison, Stevens ’84].) We focus on these.

This action only maps the torus to itself for specific complex structures:

Z3: τ = e2πi/3

Three C/Z3 points.
Z4: τ = i

One Z2 and two Z4

points.

Z6: τ = e2πi/3

One Z6, one Z2 and
one Z3 point.
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Holographic perspective

There seems to be no obstruction to taking the F-theory limit, so
we end up with a IIB background of the form C3/Zk. Putting D3
branes on the singularity, and taking the near horizon limit, this
suggests a dual description for the field theories in terms of
AdS5 × (S5/Zk), with a non-trivial flat SL(2,Z) bundle. (Provides
a microscopic realization of the setup proposed in
[Ferrara,Porrati,Zaffaroni ’98].)

Remarkably, the axio-dilaton τ is frozen to a O(1) value in these
backgrounds. We learn that the theories on the branes no longer have
the marginal deformation associated to changing the Yang-Mills coupling.
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N = 4 quotient perspective
In terms purely of the theory on the probe branes, we start from the
observation that for particular (self-dual) values of τYM , certain Zk
subgroups of the SL(2,Z) become symmetries. For instance, when
τ = i we have that S-duality

S =

(
0 −1
1 0

)
(11)

becomes a symmetry of the theory. (−i−1 = i.)

We can then construct appropriate quotients

Qk =
N = 4 U(N)

ZRk · Z
SL(2,Z)
k

. (12)

We choose ZRk to be the R-symmetry generator associated with the
Zk rotation in the transverse R6, in order to preserve susy.
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Supersymmetry
We claim that these theories preserve (just) 12 supercharges for
n > 2. We now show this in the N = 4 SYM quotient perspective
(the computation from the other viewpoints is essentially
isomorphic).

The 16 supercharges arrange into four spacetime spinors QAα , a
spinor of SU(4)R. Under the Zk rotation these transform as
(ωk = exp(2πi/k))

(Q1, Q2, Q3, Q4)→ (ω
1
2
kQ

1, ω
1
2
kQ

2, ω
1
2
kQ

3, ω
− 3

2
k Q4) . (13)

The transformation of the supercharge generators under a SL(2,Z)
transformation is [Kapustin, Witten ’06]

QA → γ
1
2QA with γ =

|cτ + d|
cτ + d

. (14)

For the theories we are constructing, we have γ = ω−1
k , so only QA with

A = 1, 2, 3 survive the quotient. (For Z4: gSL(2,Z) = S, τ = i, so
γ = −i, while ω4 = i.) (Notice that for k = 1, 2 we preserve N = 4.)
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Properties of the SCFT

We have constructed new N = 3 theories. What do we know about
them?

During the last few months a beautiful set of results have appeared
which (among other things) shed light on the behavior of N = 3
SCFTs in 4d. [Aharony, Evtikhiev ’15], [Nishinaka, Tachikawa ’16],
[Córdova, Dumitrescu, Intriligator ’16], [Argyres, Lotito, Lü, Martone
’16], [Aharony, Tachikawa ’16], [Imamura, Yokoyama ’16], [Imamura,
Kato, Yokoyama ’16], [Agarwal, Amariti ’16].

I’ll give a very brief summary of what these works say about N = 3
theories.
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Relevant and marginal deformations

In [Aharony, Evtikhiev ’15] and [Córdova,Dumitrescu,Intriligator ’16] it is
shown that truly N = 3 theories cannot have marginal or relevant
deformations preserving N = 3.

(Seems to be in good agreement with our construction: N = 4 theories
have no relevant deformations preserving N = 4, and just one marginal
deformation preserving N = 4: the coupling, which we project out in our
quotient.)
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Rank one N = 3 theories

It was shown in [Nishinaka, Tachikawa ’16] that for rank one N = 3
theories, the form of the moduli space is necessarily C3/Z`, with
` ∈ {1, 2, 3, 4, 6}. Furthermore, for ` = 1, 2 one has enhancement to
N = 4, while for ` = 3, 4, 6 the theory is purely N = 3.

The central charge has been computed: a = c = (2`− 1)/4. (For N = 3
it is always the case that a = c. [Aharony, Evtikhiev ’15]) (The general
form of a = c has been conjectured in [Aharony, Tachikawa ’16].)

The associated 2d chiral algebras have been constructed.[Beem,
Lemos,Liendo,Peelaers,Rastelli,van Rees ’13], [Nishinaka, Tachikawa ’16]

N = 3 theories are necessarily N = 2. There is a proposed classification
of rank-one N = 2 theories by [Argyres, Lotito, Lü, Martone ’16]. The
possibilities allowed by the classification are very limited, and the N = 3
theories we find seem to fit well in the classification.



Introduction Revisiting the O3 plane Generalizing the O3 plane SCFT properties Conclusions

Rank one N = 3 theories

It was shown in [Nishinaka, Tachikawa ’16] that for rank one N = 3
theories, the form of the moduli space is necessarily C3/Z`, with
` ∈ {1, 2, 3, 4, 6}. Furthermore, for ` = 1, 2 one has enhancement to
N = 4, while for ` = 3, 4, 6 the theory is purely N = 3.

The central charge has been computed: a = c = (2`− 1)/4. (For N = 3
it is always the case that a = c. [Aharony, Evtikhiev ’15]) (The general
form of a = c has been conjectured in [Aharony, Tachikawa ’16].)

The associated 2d chiral algebras have been constructed.[Beem,
Lemos,Liendo,Peelaers,Rastelli,van Rees ’13], [Nishinaka, Tachikawa ’16]

N = 3 theories are necessarily N = 2. There is a proposed classification
of rank-one N = 2 theories by [Argyres, Lotito, Lü, Martone ’16]. The
possibilities allowed by the classification are very limited, and the N = 3
theories we find seem to fit well in the classification.



Introduction Revisiting the O3 plane Generalizing the O3 plane SCFT properties Conclusions

Rank one N = 3 theories

It was shown in [Nishinaka, Tachikawa ’16] that for rank one N = 3
theories, the form of the moduli space is necessarily C3/Z`, with
` ∈ {1, 2, 3, 4, 6}. Furthermore, for ` = 1, 2 one has enhancement to
N = 4, while for ` = 3, 4, 6 the theory is purely N = 3.

The central charge has been computed: a = c = (2`− 1)/4. (For N = 3
it is always the case that a = c. [Aharony, Evtikhiev ’15]) (The general
form of a = c has been conjectured in [Aharony, Tachikawa ’16].)

The associated 2d chiral algebras have been constructed.[Beem,
Lemos,Liendo,Peelaers,Rastelli,van Rees ’13], [Nishinaka, Tachikawa ’16]

N = 3 theories are necessarily N = 2. There is a proposed classification
of rank-one N = 2 theories by [Argyres, Lotito, Lü, Martone ’16]. The
possibilities allowed by the classification are very limited, and the N = 3
theories we find seem to fit well in the classification.



Introduction Revisiting the O3 plane Generalizing the O3 plane SCFT properties Conclusions

Rank one N = 3 theories

It was shown in [Nishinaka, Tachikawa ’16] that for rank one N = 3
theories, the form of the moduli space is necessarily C3/Z`, with
` ∈ {1, 2, 3, 4, 6}. Furthermore, for ` = 1, 2 one has enhancement to
N = 4, while for ` = 3, 4, 6 the theory is purely N = 3.

The central charge has been computed: a = c = (2`− 1)/4. (For N = 3
it is always the case that a = c. [Aharony, Evtikhiev ’15]) (The general
form of a = c has been conjectured in [Aharony, Tachikawa ’16].)

The associated 2d chiral algebras have been constructed.[Beem,
Lemos,Liendo,Peelaers,Rastelli,van Rees ’13], [Nishinaka, Tachikawa ’16]

N = 3 theories are necessarily N = 2. There is a proposed classification
of rank-one N = 2 theories by [Argyres, Lotito, Lü, Martone ’16]. The
possibilities allowed by the classification are very limited, and the N = 3
theories we find seem to fit well in the classification.



Introduction Revisiting the O3 plane Generalizing the O3 plane SCFT properties Conclusions

Holographic dual
The holographic dual is F-theory on AdS5 × (S5 × T 2)/Zk. In
[Aharony, Tachikawa ’16] and [Imamura, Yokoyama ’16] it was shown
how to understand the different OF3k variants in this language, clarifying
a subtlety in an analysis by [Witten ’98] for O3 planes, and extending it
to OF3k>2.

In particular, this viewpoint gives a way of computing the leading and
subleading (in N) contribution to the superconformal index of these
theories.

Amusingly, at low N the can be accidental enhancement to N = 4, and
one finds in this way the “holographic duals” of N = 4 with gauge
algebras su(3), so(5) and g2. [Aharony, Tachikawa ’16], [Imamura, Kato,
Yokoyama ’16], [Agarwal, Amariti ’16].

Question
For N = 4 we are only missing f4 and ei with i ∈ {6, 7, 8}. Can we

construct them with D3 branes? Perhaps from an accidental
enhancement of N = 2?



Introduction Revisiting the O3 plane Generalizing the O3 plane SCFT properties Conclusions

Conclusions

We have constructed the first known examples of N = 3
SCFTs.
We do so by a very natural F-theoretical generalization of the
O3 plane, which freezes out the axio-dilaton, giving
intrinsically strongly coupled backgrounds.
The geometry involves rigid (neither deformable nor resolvable
in a Calabi-Yau way) singularities.
F-theoretical example of branes at singularities.
The SCFTs we find have natural holographic descriptions as
AdS5 ×X, where X is a non-trivial smooth F-theory
background with frozen axio-dilaton, realizing the proposal in
[Ferrara, Porrati, Zaffaroni ’98].
From F/M duality we have that upon compactification on a circle
we flow to N ≥ 6 ABJM theories.
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Open questions

Many!
Make concrete the notion of Chan-Patons in the U(N)N=4

symmetry
description. BPS states? SCI?
Other N = 4 starting points, beyond U(N)?
Relating the SCI of the N = 3 theories to N = 6 ABJM
partition functions.



Additional Material



Classification

Potential OF3 planes

From the M-theory perspective we can classify all possible D3
charges for OF3 planes.

Z2: τ arb.
Z⊕42

Z3: τ = e2πi/3

Z⊕33

Z4: τ = i
Z2 ⊕ Z⊕24

Z6: τ = e2πi/3

Z2 ⊕ Z3 ⊕ Z6

Around each C4/Zk fixed point we can turn on a discrete F4 flux
valued in H4(S7/Zk,Z) = Zk.



Classification

Potential OF3 planes

From here we can compute the M2 charge around each fixed point.
If the torsion is trivial this comes just from curvature [Bergman,
Hirano ’09]

Q(OMk,0) = −χ(C4/Zk)

24
= − 1

24

(
k − 1

k

)
. (15)

The contribution from a p ∈ H4(S7/bZk,Z) flux gives an additional term
[Aharony, Hashimoto, Hirano, Ouyang ’09]

Q(OMk,p) = Q(OMk,0) +
p(k − p)

2k
. (16)



Classification

Potential OF3 planes

Orientifold Charges

OF2 −1
4 , 0,

1
4 ,

1
2 ,

3
4

OF3 −1
3 , 0,

1
3 ,

2
3

OF4 −3
8 ,−

1
8 , 0,

1
8 ,

1
4 ,

3
8 ,

1
2 ,

5
8 ,

3
4 ,

7
8

OF6 − 5
12 ,−

1
6 ,−

1
12 , 0,

1
6 ,

1
4 ,

1
3 ,

1
2 ,

7
12 ,

2
3 ,

5
6 ,

11
12

But notice!
Not all of these M-theory settings lift to non-trivial orientifolds in

IIB!
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Classification

Classification results

The proper classification was achieved by [Aharony, Tachikawa ’16].

H3(S5/Zk, (Z⊕ Z)ρ) =


Z2 ⊕ Z2 (k = 2)

Z3 (k = 3)

Z2 (k = 4)

Z1 (k = 6)

(17)

or alternatively, directly seeing which fluxes lift in F-theory to non-shift
orientifolds.
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