T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry

T-branes through 3d mirror symmetry

Simone Giacomelli

Université Libre de Bruxelles and Solvay Institutes

Bern, July 04 2016

Based on: A. Collinucci, S.G., R. Savelli and R. Valandro arXiv:1603.00062[hep-th]

イロン 不同と 不同と 不同と

æ

Branes and F/M-theory geometry

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry A stack of $N D_p$ branes supports a U(N) gauge theory and the vev of the scalars Φ_i in the vectormultiplet parametrizes the position of the branes.

In M/F-theory these data (eigenvalues of Φ_i) are encoded in the geometric properties of the background.

In the case of D7 branes we have the BPS equation $[\Phi, \Phi^{\dagger}] \sim F_A$ and if we turn on the gauge flux we can consider a non diagonalizable Higgs field! S. Cecotti, C. Cordova, J. Heckman, C. Vafa '10.

A brane configuration with nilpotent Φ is called **T-brane**!

・ロン ・回と ・ヨン ・ヨン

Branes and F/M-theory geometry

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry A stack of $N D_p$ branes supports a U(N) gauge theory and the vev of the scalars Φ_i in the vectormultiplet parametrizes the position of the branes.

In M/F-theory these data (eigenvalues of Φ_i) are encoded in the geometric properties of the background.

In the case of D7 branes we have the BPS equation $[\Phi, \Phi^{\dagger}] \sim F_A$ and if we turn on the gauge flux we can consider a non diagonalizable Higgs field! S. Cecotti, C. Cordova, J. Heckman, C. Vafa '10.

A brane configuration with nilpotent Φ is called **T-brane**!

イロン イヨン イヨン イヨン

Branes and F/M-theory geometry

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry A stack of $N D_p$ branes supports a U(N) gauge theory and the vev of the scalars Φ_i in the vectormultiplet parametrizes the position of the branes.

In M/F-theory these data (eigenvalues of Φ_i) are encoded in the geometric properties of the background.

In the case of D7 branes we have the BPS equation $[\Phi, \Phi^{\dagger}] \sim F_A$ and if we turn on the gauge flux we can consider a non diagonalizable Higgs field! S. Cecotti, C. Cordova, J. Heckman, C. Vafa '10.

A brane configuration with nilpotent Φ is called **T-brane**!

・ロト ・回ト ・ヨト ・ヨト

T-branes in M-theory and probes

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry One way to characterize compactifications of F-theory is in terms of a dual description in M-theory:

M-theory on X \sim F-theory on $S^1 \times X$.

On a stack of D6 branes there are three scalars Φ_i . A T-brane is defined by $[\langle \Phi_i \rangle, \langle \Phi_j \rangle] \neq 0$. We consider the case of nilpotent vev for $\Phi_{D6} = \Phi_1 + i\Phi_2$.

Since we don't have a definition of T-brane in M-theory, we consider the 3d theory on a 2-brane probing a T-brane background. For simplicity we will restrict to ADE singularities.

イロン イヨン イヨン イヨン

T-branes in M-theory and probes

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry One way to characterize compactifications of F-theory is in terms of a dual description in M-theory:

M-theory on X
$$\sim$$
 F-theory on $S^1 imes X$.

On a stack of D6 branes there are three scalars Φ_i . A T-brane is defined by $[\langle \Phi_i \rangle, \langle \Phi_j \rangle] \neq 0$. We consider the case of nilpotent vev for $\Phi_{D6} = \Phi_1 + i\Phi_2$.

Since we don't have a definition of T-brane in M-theory, we consider the 3d theory on a 2-brane probing a T-brane background. For simplicity we will restrict to ADE singularities.

イロト イヨト イヨト イヨト

T-branes in M-theory and probes

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry One way to characterize compactifications of F-theory is in terms of a dual description in M-theory:

M-theory on X
$$\sim$$
 F-theory on $\mathcal{S}^1 imes X$.

On a stack of D6 branes there are three scalars Φ_i . A T-brane is defined by $[\langle \Phi_i \rangle, \langle \Phi_j \rangle] \neq 0$. We consider the case of nilpotent vev for $\Phi_{D6} = \Phi_1 + i\Phi_2$.

Since we don't have a definition of T-brane in M-theory, we consider the 3d theory on a 2-brane probing a T-brane background. For simplicity we will restrict to ADE singularities.

イロト イポト イヨト イヨト

$\mathcal{N}=4$ moduli space and mirror symmetry

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry

- Vectormultiplet: (A_{μ}, σ, Φ) .
 - Hypermultiplet: (Φ_1, Φ_2) .
 - Monopole operators: $d\gamma = *dA$, $W_{\pm} = e^{\sigma \pm i \gamma}$

Coulomb branch: space of vacua where only vectormultiplet scalars and monopoles have a vev. It is modified by quantum corrections.

Higgs Branch: space of vacua where only hypermultiplet scalars have a vev. Unaffected by quantum corrections.

Mirror Symmetry (K. Intriligator, N. Seiberg '96)

Duality between $\mathcal{N} = 4$ theories exchanging Coulomb and Higgs branches.

(日) (同) (E) (E) (E)

$\mathcal{N}=4$ moduli space and mirror symmetry

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry

- Vectormultiplet: (A_{μ}, σ, Φ) .
 - Hypermultiplet: (Φ_1, Φ_2) .
 - Monopole operators: $d\gamma = *dA$, $W_{\pm} = e^{\sigma \pm i \gamma}$

Coulomb branch: space of vacua where only vectormultiplet scalars and monopoles have a vev. It is modified by quantum corrections.

Higgs Branch: space of vacua where only hypermultiplet scalars have a vev. Unaffected by quantum corrections.

Mirror Symmetry (K. Intriligator, N. Seiberg '96)

Duality between $\mathcal{N} = 4$ theories exchanging Coulomb and Higgs branches.

(日) (同) (E) (E) (E)

D6 branes VS abelian singularity

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry **Theory A:** (D2 on top of N D6 branes) SQED with N flavors. **Theory B:** (D2 at a A_{N-1} singularity) circular quiver with N gauge groups $(W = \sum_i S_i q_i \tilde{q}^i - \Psi \sum_i S_i).$

Theory A: (D2 on top of N D6 and O6 plane) SU(2) SQCD with N flavors.

Theory B: (D2 brane probing a singularity of type D_N) unitary quiver with affine D_N shape.

D6 branes VS abelian singularity

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry **Theory A:** (D2 on top of N D6 branes) SQED with N flavors. **Theory B:** (D2 at a A_{N-1} singularity) circular quiver with N gauge groups $(W = \sum_i S_i q_i \tilde{q}^i - \Psi \sum_i S_i).$

Theory A: (D2 on top of N D6 and O6 plane) SU(2) SQCD with N flavors.

Theory B: (D2 brane probing a singularity of type D_N) unitary quiver with affine D_N shape.

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry In Theory A monopole operators satisfy V. Borokhov, A. Kapustin, X. Wu '02. $W_+W_-\sim \Phi^N \quad (A_{N-1} \text{ singularity})$

Theory B we have $\mathcal{W} = \sum_{i} S_{i} q_{i} \tilde{q}^{i} - \Psi \sum_{i} S_{i}$ $0 = \partial \mathcal{W} / \partial S_{i} = q_{i} \tilde{q}^{i} - \Psi.$

$$B\tilde{B} = \prod_{i} q_{i}\tilde{q}^{i} = \Psi^{N} \quad (B = \prod_{i} q_{i}, \ \tilde{B} = \prod_{i} \tilde{q}^{i}).$$

In the D2 theory, $\langle \Phi_{D6} \rangle$ is interpreted as the mass $m_i^j Q_j \tilde{Q}^i$.

\downarrow

Using the mirror map, a T-brane deforms theory B by

$$\delta \mathcal{W} = m W_{i,+}.$$

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry

In Theory A monopole operators satisfy V. Borokhov, A. Kapustin, X. Wu '02.

$$W_+W_- \sim \Phi^N$$
 (A_{N-1} singularity)
In Theory B we have $\mathcal{W} = \sum_i S_i q_i \tilde{q}^i - \Psi \sum_i S_i$
 $0 = \partial \mathcal{W} / \partial S_i = q_i \tilde{q}^i - \Psi$.
 $B\tilde{B} = \prod_i q_i \tilde{q}^i = \Psi^N$ ($B = \prod_i q_i$, $\tilde{B} = \prod_i \tilde{q}^i$).

In the D2 theory, $\langle \Phi_{D6} \rangle$ is interpreted as the mass $m_i^I Q_i \tilde{Q}^i$.

Using the mirror map, a T-brane deforms theory B by

$$\delta \mathcal{W} = m W_{i,+}.$$

イロン イヨン イヨン イヨン

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry

In Theory A monopole operators satisfy V. Borokhov, A. Kapustin, X. Wu '02. $W_+W_- \sim \Phi^N$ (A_{N-1} singularity) In Theory B we have $\mathcal{W} = \sum_i S_i q_i \tilde{q}^i - \Psi \sum_i S_i$ $0 = \partial \mathcal{W} / \partial S_i = q_i \tilde{q}^i - \Psi.$ $B\tilde{B} = \prod q_i \tilde{q}^i = \Psi^N \quad (B = \prod q_i, \ \tilde{B} = \prod \tilde{q}^i).$ In the D2 theory, $\langle \Phi_{D6} \rangle$ is interpreted as the mass $m_i^j Q_i \tilde{Q}^i$.

Using the mirror map, a T-brane deforms theory B by

$$\delta \mathcal{W} = m W_{i,+}.$$

(日) (同) (E) (E) (E)

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry

In Theory A monopole operators satisfy V. Borokhov, A. Kapustin, X. Wu '02.

$$W_+W_- \sim \Phi^N \quad (A_{N-1} \text{ singularity})$$

In Theory B we have $\mathcal{W} = \sum_i S_i q_i \tilde{q}^i - \Psi \sum_i S_i$
 $0 = \partial \mathcal{W} / \partial S_i = q_i \tilde{q}^i - \Psi$.
 $B\tilde{B} = \prod_i q_i \tilde{q}^i = \Psi^N \quad (B = \prod_i q_i, \ \tilde{B} = \prod_i \tilde{q}^i)$.
In the D2 theory, $\langle \Phi_{D6} \rangle$ is interpreted as the mass $m_i^j Q_j \tilde{Q}^i$.
 \downarrow

Using the mirror map, a T-brane deforms theory B by

$$\delta \mathcal{W} = m W_{i,+}.$$

・ロン ・回と ・ヨン・

æ

$\mathcal{N}=2$ abelian mirror symmetry

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry The mirror for $\mathcal{N} = 2$ abelian theories is known O. Aharony et al. '97 **Theory A:** $\mathcal{N} = 2$ SQED with N flavors ($\mathcal{W} = 0$) **Theory B:** quiver with N gauge groups ($\mathcal{W} = \sum_i S_i q_i \tilde{q}^i$)

- For N = 2: Theory A is SQED with 2 flavors. Theory B is Theory A with $W = S_1 q_1 \tilde{q}^1 + S_2 q_2 \tilde{q}^2$.
- For N = 1: Theory A is SQED with one flavor. Theory B describes 3 chirals with $\mathcal{W} = XYZ$. $X \leftrightarrow Q\tilde{Q}, Y \leftrightarrow W_+, Z \leftrightarrow W_-$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Local mirror symmetry

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry All nodes are U(N) theories with 2N flavors so, under mirror symmetry monopoles are mapped to mass terms.

- Make the gauge coupling at neighbouring nodes small
- Consider the mirror of the gauge node "in isolation" and integrate out massive fields
- Extract the mirror of the resulting theory and couple it to the rest of the quiver

In the A_{N-1} case we have a U(1) theory with 2 flavors

$$\mathcal{W} = S_1 q_1 \tilde{q}^1 + S_2 q_2 \tilde{q}^2 + m W_+ - \Psi(S_1 + S_2) + \dots$$

Integrating out the massive flavor in the mirror side we find

$$\mathcal{W} = -\Psi'^2 Q \tilde{Q}/m.$$

Its mirror is the XYZ model with

$$\mathcal{W} = -\Psi^2 X/m + XYZ.$$

イロト イヨト イヨト イヨト

Local mirror symmetry

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry All nodes are U(N) theories with 2N flavors so, under mirror symmetry monopoles are mapped to mass terms.

- Make the gauge coupling at neighbouring nodes small
- Consider the mirror of the gauge node "in isolation" and integrate out massive fields
- Extract the mirror of the resulting theory and couple it to the rest of the quiver

In the A_{N-1} case we have a U(1) theory with 2 flavors

$$W = S_1 q_1 \tilde{q}^1 + S_2 q_2 \tilde{q}^2 + mW_+ - \Psi(S_1 + S_2) + \dots$$

Integrating out the massive flavor in the mirror side we find

$$\mathcal{W} = -\Psi'^2 Q \tilde{Q}/m.$$

Its mirror is the XYZ model with

$$\mathcal{W}=-\Psi^2 X/m+XYZ.$$

イロト イポト イヨト イヨト

Resolutions and deformations

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersym metry

Monopoles and mirror symmetry

In the $\mathcal{N} = 4$ theory with N flavors $\mathcal{W} = \sum_{i=1}^{N} S_i(q_i \tilde{q}^i - \Psi)$: • N - 1 deformation parameters: $\delta \mathcal{W} = \lambda_i S_i$.

• *N* resolution parameters: FI terms $\int d^4\theta \xi_i V_i$.

Turning on a T-brane $\mathcal{W} = \sum_{i=1}^{N-2} S_i(q_i \tilde{q}^i - \Psi) + S(q \tilde{q} - \Psi^2)$:

- N-1 deformation parameters: $\delta W = \lambda_i S_i$.
- N-1 resolution parameters: FI terms $\int d^4\theta \xi_i V_i$.

The Higgs branch is the same as in the parent $\mathcal{N} = 4$ theory but the resolution of the singularity is obstructed.

Resolutions and deformations

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry

In the $\mathcal{N} = 4$ theory with N flavors $\mathcal{W} = \sum_{i=1}^{N} S_i(q_i \tilde{q}^i - \Psi)$: • N - 1 deformation parameters: $\delta \mathcal{W} = \lambda_i S_i$.

• *N* resolution parameters: FI terms $\int d^4\theta \xi_i V_i$.

Turning on a T-brane $\mathcal{W} = \sum_{i=1}^{N-2} S_i(q_i \tilde{q}^i - \Psi) + S(q \tilde{q} - \Psi^2)$:

- N-1 deformation parameters: $\delta W = \lambda_i S_i$.
- N-1 resolution parameters: FI terms $\int d^4\theta \xi_i V_i$.

The Higgs branch is the same as in the parent $\mathcal{N} = 4$ theory but the resolution of the singularity is obstructed l_{DQQ}

Resolutions and deformations

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry

In the $\mathcal{N} = 4$ theory with N flavors $\mathcal{W} = \sum_{i=1}^{N} S_i(q_i \tilde{q}^i - \Psi)$: • N - 1 deformation parameters: $\delta \mathcal{W} = \lambda_i S_i$.

• *N* resolution parameters: FI terms $\int d^4\theta \xi_i V_i$.

Turning on a T-brane $\mathcal{W} = \sum_{i=1}^{N-2} S_i(q_i \tilde{q}^i - \Psi) + S(q \tilde{q} - \Psi^2)$:

- N-1 deformation parameters: $\delta W = \lambda_i S_i$.
- N-1 resolution parameters: FI terms $\int d^4\theta \xi_i V_i$.

The Higgs branch is the same as in the parent $\mathcal{N} = 4$ theory but the resolution of the singularity is obstructed!

T-branes for the D_N theory

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry

At an abelian node we have the superpotential

$$\mathcal{W} = -\phi \operatorname{Tr}(q \widetilde{q}) + \operatorname{Tr}(\Phi_{U(2)} q \widetilde{q}) + W_+$$

Integrating out the massive flavor in the mirror

$$\mathcal{W} = -\phi(S_1 + S_2) + \operatorname{Tr}(\Phi_{U(2)}M) - S_1S_2Q\tilde{Q}$$

$$\mathcal{W} = -\phi \operatorname{Tr} M + \operatorname{Tr}(\Phi_{U(2)}M) - X \det M; \ M = \begin{pmatrix} S_1 & Y \\ Z & S_2 \end{pmatrix}$$

The D_N singularity is preserved, the blow-up-is obstructed $_{2}$

T-branes for the D_N theory

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry At an abelian node we have the superpotential

$$\mathcal{W} = -\phi \operatorname{Tr}(q \widetilde{q}) + \operatorname{Tr}(\Phi_{U(2)} q \widetilde{q}) + W_+$$

Integrating out the massive flavor in the mirror

$$\mathcal{W}=-\phi(S_1+S_2)+{
m Tr}(\Phi_{U(2)}M)-S_1S_2Q ilde{Q}$$
 and mirroring again

$$\mathcal{W} = -\phi \operatorname{Tr} M + \operatorname{Tr}(\Phi_{U(2)}M) - X \operatorname{det} M; \ M = \begin{pmatrix} S_1 & Y \\ Z & S_2 \end{pmatrix}$$

The D_N singularity is preserved, the blow-up-is obstructed!

T-branes for the D_N theory

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry At an abelian node we have the superpotential

$$\mathcal{W} = -\phi \operatorname{Tr}(q \widetilde{q}) + \operatorname{Tr}(\Phi_{U(2)} q \widetilde{q}) + W_+$$

Integrating out the massive flavor in the mirror

$$\mathcal{W}=-\phi(S_1+S_2)+{
m Tr}(\Phi_{U(2)}M)-S_1S_2Q ilde{Q}$$
 and mirroring again

$$\mathcal{W} = -\phi \operatorname{Tr} M + \operatorname{Tr}(\Phi_{U(2)}M) - X \operatorname{det} M; \ M = \left(egin{array}{cc} S_1 & Y \ Z & S_2 \end{array}
ight)$$

The D_N singularity is preserved, the blow-up is obstructed!

Concluding remarks

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry We proposed a method to understand the properties of T-branes through the wordvolume theory of a brane probing the geometry.

We found a quiver gauge theory description telling us that T-branes do not deform the geometry but obstruct resolutions!

For D, E singularities we can understand the case of minimal nilpotent mass matrices. The general case requires knowledge of nonabelian $\mathcal{N} = 2$ mirror symmetry. It would be interesting to apply this method to more complicated backgrounds/brane systems

Thank You!

イロン イヨン イヨン イヨン

Concluding remarks

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry We proposed a method to understand the properties of T-branes through the wordvolume theory of a brane probing the geometry.

We found a quiver gauge theory description telling us that T-branes do not deform the geometry but obstruct resolutions!

For D, E singularities we can understand the case of minimal nilpotent mass matrices. The general case requires knowledge of nonabelian $\mathcal{N} = 2$ mirror symmetry.

It would be interesting to apply this method to more complicated backgrounds/brane systems.

Thank You!

・ロン ・回 と ・ ヨ と ・ ヨ と

Concluding remarks

T-branes through 3d mirror symmetry

Simone Giacomelli

T-branes in string theory

3D Supersymmetry

Monopoles and mirror symmetry We proposed a method to understand the properties of T-branes through the wordvolume theory of a brane probing the geometry.

We found a quiver gauge theory description telling us that T-branes do not deform the geometry but obstruct resolutions!

For D, E singularities we can understand the case of minimal nilpotent mass matrices. The general case requires knowledge of nonabelian $\mathcal{N}=2$ mirror symmetry.

It would be interesting to apply this method to more complicated backgrounds/brane systems.

Thank You!

・ロト ・回ト ・ヨト ・ヨト